• Title/Summary/Keyword: LiCl salt waste

Search Result 96, Processing Time 0.021 seconds

Cesium and strontium recovery from LiCl-KCl eutectic salt using electrolysis with liquid cathode

  • Jang, Junhyuk;Lee, Minsoo;Kim, Gha-Young;Jeon, Sang-Chae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3957-3961
    • /
    • 2022
  • Deposition behaviors of Sr and Cs in various liquid cathodes, such as Zn, Bi, Cd, and Pb, were examined to evaluate their recovery from LiCl-KCl eutectic salt. Cations in the salt were deposited on the liquid cathode, exhibiting potential of -1.8 to -2.1 V (vs. Ag/AgCl). Zn cathode had successful deposition of Sr and exhibited the highest recovery efficiency, up to 55%. Meanwhile, the other liquid cathodes showed low current efficiencies, below 18%, indicating LiCl-KCl salt decomposition. Sr was recovered from the Zn cathode as irregular rectangular SrZn13 particles. A negligible amount of Cs was deposited on the entire liquid cathode, indicating that Cs was hardly deposited on liquid cathodes. Based on these results, we propose that liquid Zn cathode can be used for cleaning Sr in LiCl-KCl salt.

Immobilization of Molten Waste Salt Using Zeolites (제올라이트를 이용한 용융염폐기물 고정화)

  • 김정국;이재희;김준형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.215-219
    • /
    • 2003
  • The technology to fix a molten LiCl waste, which would be generated from the process to convert spent fuel to metal, into zeolite and then make a final waste form is doing developed. The XRD results of salt-loaded zeolites with different mixing ratios showed that all zeolites transformed from zeolite A type into Li-A type, or also Sodalite type as a minor phase for some conditions. The optimum LiCl-to-zeolite ratio to bring a minimum free salt was 1.0 when the molten LiCl waste contained Cs and Sr.

  • PDF

A Basic Study on Capture and Solidification of Rare Earth Nuclide (Nd) in LiCl-KCl Eutectic Salt Using an Inorganic Composite With Li2O-Al2O3-SiO2-B2O3 System (Li2O-Al2O3-SiO2-B2O3 구조의 무기합성매질을 이용한 LiCl-KCl 공융염 내 희토류 핵종(Nd)의 분리 및 고화에 관한 기초연구)

  • Kim, Na-Young;Eun, Hee-Chul;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • The pyroprocessing of spent nuclear fuel generates LiCl-KCl eutectic waste salt containing radioactive rare earth nuclides. It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste in a hot-cell facility. In this study, capture and solidification of a rare earth nuclide (Nd) in LiCl-KCl eutectic salt using an inorganic composite with a $Li_2O-Al_2O_3-SiO_2-B_2O_3$ system was conducted to simplify the existing separation and solidification process of rare earth nuclides in LiCl-KCl eutectic waste salt from the pyroprocessing of spent nuclear fuel. More than 98wt% of Nd in LiCl-KCl eutectic salt was captured when the mass ratio of the composite was 0.67 over $NdCl_3$ in the eutectic salt. The content of $Nd_2O_3$ in the Nd captured-composite reached about 50wt%, and this composite was directly fabricated into a homogeneous and chemical resistant glass waste in a monolithic form. These results will be utilized in designing a process to simplify the existing separation and solidification process.

Thermal Release of LiCl Waste Salt from Pyroprocessing (파이로프로세싱 발생 LiCl염폐기물의 열발생)

  • Kim, Jeong-Guk;Kim, Kwang-Rag;Kim, In-Tae;Ahn, Do-Hee;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • The decay heat of Cs and Sr contained in a LiCl waste salt, generated from an electrolytic reduction process in pyroprocessing of spent nuclear fuel, has been calculated. The calculation has been carried out under some assumptions that most of the LiCl waste is purified and recycled to main process, and the residual is fabricated to make a waste form. As a result, the decay heat from daughter nuclides such as Ba and Y seems to be maximum 4.6 times higher than that from their parent nuclides such as Cs and Sr. The thermal release from Cs and Sr in the LiCl waste is the maximum around the first one month, so an cooling system operation for some time at the beginning would be suggested to control a rapid increase in the temperature of the LiCl waste salt.

  • PDF

Use of Li-K-Cd Alloy to Remove MCl3 in LiCl-KCl Eutectic Salt (Li-K-Cd 합금을 이용한 LiCl-KCl 용융염에서 금속염화물의 제거)

  • Kim, Gha-Young;Kim, Tack-Jin;Jang, Junhyuk;Kim, Si-Hyung;Lee, Chang Hwa;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.309-313
    • /
    • 2018
  • In this study, we prepared Li-K-Cd alloy, which meets the requirement of eutectic ratio of Li:K, to maintain the operating temperature of the drawdown process at $500^{\circ}C$ and to achieve the reuse of LiCl-KCl molten salt. The prepared Li-K-Cd alloys were added to LiCl-KCl salt bearing U and Nd at $500^{\circ}C$ to investigate the removal of $UCl_3$ in the salt. The reduction of $UCl_3$ in the salt was examined by measuring the OCP value of salt and analyzing the salt composition by ICP-OES. Reduction was also visually confirmed by change of salt color from dark purple to white. The experimental results reveal that the prepared Li-K-Cd alloy has reductive extractability for $UCl_3$ in salt. By improving the preparation method, the Li-K-Cd alloy can be applied to the drawdown process.

Actinide Drawdown From LiCl-KCl Eutectic Salt via Galvanic/chemical Reactions Using Rare Earth Metals

  • Yoon, Dalsung;Paek, Seungwoo;Jang, Jun-Hyuk;Shim, Joonbo;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.373-382
    • /
    • 2020
  • This study proposes a method of separating uranium (U) and minor actinides from rare earth (RE) elements in the LiCl-KCl salt system. Several RE metals were used to reduce UCl3 and MgCl2 from the eutectic LiCl-KCl salt systems. Five experiments were performed on drawdown U and plutonium (Pu) surrogate elements from RECl3-enriched LiCl-KCl salt systems at 773 K. Via the introduction of RE metals into the salt system, it was observed that the UCl3 concentration can be lowered below 100 ppm. In addition, UCl3 was reduced into a powdery form that easily settled at the bottom and was successfully collected by a salt distillation operation. When the RE metals come into contact with a metallic structure, a galvanic interaction occurs dominantly, seemingly accelerating the U recovery reaction. These results elucidate the development of an effective and simple process that selectively removes actinides from electrorefining salt, thus contributing to the minimization of the influx of actinides into the nuclear fuel waste stream.

Reuse Technology of LiCl Salt Waste Generated from Electrolytic Reduction Process of Spent Oxide Fuel (전해환원공정발생 LiCl 염폐기물 재생기술)

  • Cho, Yung-Zun;Jung, Jin-Seok;Lee, Han-Soo;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.57-63
    • /
    • 2010
  • Layer crystallization process was tested for the separation(or concentration) of cesium and strontium fission products in a LiCl waste salt generated from an electrolytic reduction process of a spent oxide fuel. In a crystallization process, impurities (CsCl and $SrCl_2$) are concentrated in a small fraction of the LiCl salt by the solubility difference between the melt phase and the crystal phase. Based on the phase diagram of LiCl-CsCl-$SrCl_2$ system, the separation possibility by using crystallization was determined and the molten salt temperature profile during layer crystallization operation was predicted by using mathematical calculation. In the layer crystallization process, the crystal growth rate strongly affects the crystal structure and therefore the separation efficiency. In the conditions of about 20-25 l/min cooling air flow rate and less than 0.2g/min/$cm^2$ crystal flux, the separation efficiency of both CsCl and $SrCl_2$ showed about 90% by the layer crystallization process, assuming a LiCl salt reuse rate of 90wt%.

Density of Molten Salt Mixtures of Eutectic LiCl-KCl Containing UCl3, CeCl3, or LaCl3

  • Zhang, C.;Simpson, M.F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • Densities of molten salt mixtures of eutectic LiCl-KCl with $UCl_3$, $CeCl_3$, or $LaCl_3$ at various concentrations (up to 13 wt%) were measured using a liquid surface displacement probe. Linear relationships between the mixture density and the concentration of the added salt were observed. For $LaCl_3$ and $CeCl_3$, the measured densities were significantly higher than those previously reported from Archimedes' method. In the case of $LiCl-KCl-UCl_3$, the data fit the ideal mixture density model very well. For the other salts, the measured densities exceeded the ideal model prediction by about 2%.

Separation Characteristics of NdCl3 from LiCl-KCl Eutectic Salt in a Reactive Distillation Process using Li2CO3 or K2CO3 (탄산화물(Li2CO3, K2CO3)을 이용한 반응증류공정에서 LiCl-KCl 공융염 내 NdCl3의 분리특성)

  • Eun, Hee-Chul;Choi, Jung-Hoon;Lee, Tae-Kyo;Cho, In-Hak;Kim, Na-Young;Yu, Jae-Uk;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • It is necessary to develop an effective waste salt treatment technology for the minimization of radioactive waste generation from the pyroprocessing of spent nuclear fuel. For this reason, the separation characteristics of NdCl3 from LiCl-KCl eutectic salt in a reactive distillation process using Li2CO3 or K2CO3 were observed. NdCl3 was converted into oxychloride (NdOCl) or oxide (Nd2O3) in the reaction model between NdCl3 and the carbonates using HSC-Chemistry, and this result was confirmed in the reactive distillation test of the LiCl-KCl-NdCl3 system using the carbonates. Based on these results, the reactive distillation process conditions were determined to separate NdCl3 into an oxide form (Nd2O3) which can be easily fabricated into a final waste form.

Study on a Phosphorylation of Rare Earth Nuclide (Nd) in LiCl-KCl-NdCl3 System using Li3PO4-K3PO4 (LiCl-KCl-NdCl3계에서 Li3PO4-K3PO4를 이용한 희토류 핵종(Nd) 인산화에 관한 연구)

  • Eun, Hee-Chul;Kim, Jun-Hong;Choi, Jung-Hoon;Cho, Yung-Zun;Lee, Tae-Kyo;Park, Hwan-Seo;Park, Geun-Il
    • Journal of Advanced Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.125-129
    • /
    • 2013
  • In the pyrochemcial process of spent nuclear fuel, it is necessary to separate rare earth nuclides from LiCl-KCl eutectic waste salt for radioactive waste reduction. This paper presents the phosphorylation of neodymium chloride in LiCl-KCl-NdCl3 system using Li3PO4-K3PO4 as a phosphorylation agent in a chemical reactor with pitched blade impellers. The phosphorylation test was performed changing operation temperature, stirring rate, and amount of phosphorylation agent. Neodymium chloride was effectively converted into neodymium phosphate (NdPO4). It was confirmed that more than 99 wt% of neodymium can be separated from LiCl-KCl-NdCl3 system using a phosphorylation method l