Thermal Release of LiCl Waste Salt from Pyroprocessing

파이로프로세싱 발생 LiCl염폐기물의 열발생

  • Published : 2009.06.30

Abstract

The decay heat of Cs and Sr contained in a LiCl waste salt, generated from an electrolytic reduction process in pyroprocessing of spent nuclear fuel, has been calculated. The calculation has been carried out under some assumptions that most of the LiCl waste is purified and recycled to main process, and the residual is fabricated to make a waste form. As a result, the decay heat from daughter nuclides such as Ba and Y seems to be maximum 4.6 times higher than that from their parent nuclides such as Cs and Sr. The thermal release from Cs and Sr in the LiCl waste is the maximum around the first one month, so an cooling system operation for some time at the beginning would be suggested to control a rapid increase in the temperature of the LiCl waste salt.

사용후핵연료 파이로프로세싱의 전해환원 공정에서 발생하는 LiCl 염폐기물내 Cs과 Sr의 방사능 붕괴열을 계산하였다. 계산시 대부분의 LiCl염폐기물을 재생하여 재활용하고 나머지를 고화체로 만든다고 가정하였다. 계산결과 Cs 및 Sr의 붕괴로 생성되는 자핵종인 Ba와 Y에 의한 열발생량이 모핵종에 비해 최대 4.6배 더 많았다. LiCl염폐기물내 Cs 및 Sr에 의한 열발생은 초기 한달 정도에 최대이므로 일정 기간 초기 LiCl염폐기물의 온도 급상승을 제어할 냉각설비의 운영이 바람직할 것으로 보인다.

Keywords

References

  1. Office of Civilian Radioactive Waste Management, "Decay Heat of Major Radionuclides for PWR Spent Fuels to 10,000 Years", CAL-MGR-NU-000008 REV 00 (2001).
  2. W. L. Ebert, "Testing to Evaluate the Suitability of Waste Forms Developed for Electrometallurgically Treated Spent Sodium-Bonded Nuclear Fuel for Disposal in the Yucca Mountain Repository", Argonne National Laboratory, ANL-05/43 (2005).
  3. M. A. Lewis, D. F. Fischer, and L. J. Smith, "Salt-Occluded Zeolites as an Immobilization Matrix for Chloride Waste Salt", J. Am. Ceramic Soc., 76(11) pp. 2826-2832 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb04023.x
  4. 박환서, 김인태, 김환영, 김준형, "실리카 함유 무기매질에 의한 폐용융염의 안정화", 방사성폐기물학회지, 5(3), pp. 171-177 (2007).
  5. Cho, Y.Z., Byun, S.K. Lee H.S., and Kim, I.T., "Concentration of Cs and Sr elements involved in a LiCl Waste Salt by Melt Crystallization", Proc. of International Pyropoprocessing Research Conference, August 24-27, 2008, Jeju Island.
  6. R. A. Wigeland, T. H. Bauer, T. H. Fanning, and E. E. Morris, "Separations and Transmutation Criteria to Improve Utilization of a Geologic Repository," Nuclear Technology, 154, pp. 95-106 (2006). https://doi.org/10.13182/NT06-3
  7. OECD, "Advanced Nuclear Fuel Cycles and Radioactive Waste Management", Nuclear Energy Agency, Organization for Economic Co-operation and Development, NEA No. 5990 (2006).
  8. 일본 Isotope 협회, "Isotope Handbook", 개정 9판, 사단법인 일본Isotope협회 (1996).
  9. 조동건, 윤석균, 최희주, 최종원, 고원일, "파이로공정시설 개념설계를 위한 기준 사용후핵연료 선정", 방사성폐기물학회지, 6(3), pp. 225-232 (2008).
  10. 고원일, 조동건, "파이로 기준핵연료 분석," 파이로 리딩그룹회의 발표자료, 한국원자력연구원 (2008).
  11. "ORIGEN 2.1-Isotope Generation and Depletion Code Matrix Exponential Method," Radiation Safety Internation Computational Center, Oak Ridge National Laboratory (1999).
  12. J. Ahn and M. Cheon, "Linear Programming Approach for Optimization of Radionuclide Loading in Vitrified HLW", Nuclear Technology, 156, pp. 303-319 (2006). https://doi.org/10.13182/NT06-A3793
  13. 박근일, 조광훈, 이정원, 박장진, 양명승, 송기찬, "고연소도 경수로 사용후핵연료의 열처리에 따른 세슘 방출거동", 방사성폐기물학회지, 5(1), pp. 53-64 (2007).
  14. "Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms," EM-WAPS Rev. 2, DOE/EM-0093, U.S. Department of Energy (Dec. 1996).