• Title/Summary/Keyword: Li-ion

Search Result 1,321, Processing Time 0.028 seconds

Li-ion Battery Charateristics for Electric Scooters (전기 스쿠터를 위한 Li-ion 배터리 특성)

  • Kim, Seunghwan;Kim, Hyosung
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.71-72
    • /
    • 2015
  • 배터리의 랜들 등가회로 모델은 기본적으로, 전달 저항 Rct, 전기 이중층 커패시턴스 Cdl, 내부저항 Ri, 그리고 개방회로전압 Voc의 4가지 파라미터로 구성 된다. 본 논문은 실험에 의해 리튬이온 배터리의 모델링을 위한 기본적 4가지 파라미터를 추출하고 운전조건에 따른 특성을 분석한다. 분석 결과를 이용하여 본 연구자에 의하여 제작된 전기 스쿠터의 SOC(State of Charge)를 추정하는 알고리즘을 제안한다.

  • PDF

Preparation of LiFe PO4 Using Chitosan and its Cathodic Properties for Rechargeable Li-ion Batteries

  • Hong, Kyong-Soo;Yu, Seong-Mi;Ha, Myoung-Gyu;Ahn, Chang-Won;Hong, Tae-Eun;Jin, Jong-Sung;Kim, Hyun-Gyu;Jeong, Euh-Duck;Kim, Yang-Soo;Kim, Hae-Jin;Doh, Chil-Hoon;Yang, Ho-Soon;Jung, Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1719-1723
    • /
    • 2009
  • The LiFeP$O_4$ powder was synthesized by using the solid state reaction method with Fe($C_2O_4){\cdot}2H_2O,\;(NH_4)_2HPO_4,\;Li_2CO_3$, and chitosan as a carbon precursor material for a cathode of a lithium-ion battery. The chitosan added LiFePO4 powder was calcined at 350 ${^{\circ}C}$ for 5 hours and then 800 ${^{\circ}C}$ for 12 hours for the calcination. Then we calcined again at 800 ${^{\circ}C}$ for 12 hours. We characterized the synthesized compounds via the crystallinity, the valence states of iron ions, and their shapes using TGA, XRD, SEM, TEM, and XPS. We found that the synthesized powders were carbon-coated using TEM images and the iron ion is substituted from 3+ to 2+ through XPS measurements. We observed voltage characteristics and initial charge-discharge characteristics according to the C rate in LiFeP$O_4$ batteries. The obtained initial specific capacity of the chitosan added LiFeP$O_4$ powder is 110 mAh/g, which is much larger than that of LiFeP$O_4$ only powder.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Transfer of Lithium ion in the Placenta of the Rabbit (토끼 태반을 통한 $Li^+$이동에 관한 연구)

  • Sung, Ho-Kyung;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 1984
  • In order to determine the extent of the placental transfer of Lithium ion, pregnant rabbits at $27{\sim}29$ days of gestation, which has hemochorial placenta similar to the human placenta, received 2 mM/Kg of $Li^+$ in the form of LiCl intravenously. Maternal arterial blood, placental sinus blood, fetal blood, amniotic fluid and maternal urine were drawn two hours after the single dose of LiCl. Concentrations of $Li^+$, $Na^+$, $K^+$ and osmolarity were measured in plasma of collected bloods, amniotic fluid and urine. Followings are the results obtained. 1) Evident level of $Li^+$ was detected in fetal blood, although fetal plasma concentration of $Li^+$ found to be almost one third of maternal plasma. 2) Plasma concentration of $Li^+$ in placental sinus blood was higher than that in fetal plasma but lower than that in maternal plasma. It means that downward concentration gradient of $Li^+$ from mother to fetus was still remarkable two hours after the injection. 3) Significant level of $Li^+$ was also detected in amniotic fluid. It seemed likely that $Li^+$, at least in part, excreted by the fetal urinary tract. 4) There were no differences in $Na^+$ and osmolar concentration between fetal and maternal blood. 5) From above results, it was concluded that $Li^+$ may transfer across the placenta but limited passage capacity through placental barrier for $Li^+$ is significant, beacause net transfer assumed to be going on even at two hours, at which time maternal equlibrium has been reached.

  • PDF

Charge-discharge Properties by Cut-off Voltage Changes of Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$ and ${LiMn_2}{O_4}$in Li-ion Secondary Batteries (코발트와 니켈로 치환한 리튬이온 이차전지 Cathode, Li(${Mn_{1-\delta}}{M_{\delta}$)$_2$$O_4$${LiMn_2}{O_4}$의 Cut-off 전압 변화에 따른 충방전 특성)

  • 유광수;박재홍;이승원;조병원
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.424-430
    • /
    • 2001
  • Cut-off 전압 변화에 따른 충방전 특성을 알아보기 위하여 Mn을 다른 전이 금속이 Co와 Ni로 소량 치환시킨 Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$(M=Ni, Co, $\delta$=0, 0.05, 0.1, 0.2)를 고상 반응법으로 80$0^{\circ}C$에서 48시간 동안 유지하여 합성하였다. 충방전의 cut-off 전압은 2.5~4.4V, 3.0~4.5V, 3.5~4.5V, 3.5V~4.7V의 네 가지 전압범위고 하였다. 충방전 실험결과, Li(M $n_{1-{\delta}}$ $n_{\delta}$)$_2$ $O_4$의 용량은 각각 Co와 Ni의 $\delta$=0.1에서 최대를 보였다. Co 치환 조성 재료와 순물질 모두에서 최대의 용량을 보인 cut-off 전압대는 3.5~4.5V 이었는데 이때의 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$와 LiM $n_2$ $O_4$의 초기 충전용량과 초기 방전용량은 각각 118, 119mAh/g과 114, 104mAh/g 이었다. 또한 모든 cut-off 전압대에서 Li(M $n_{0.9}$ $Co_{0.1}$)$_2$ $O_4$는 순수한 LiM $n_2$ $O_4$보다 더 높은 용량과 우수한 싸이클 성능을 보였으며 그 결과는 밀착형 전지구성에서도 일치하였다.하였다.

  • PDF

A Study on the Structural and Electrochemical Properties of Li0.99Ni0.46Mn1.56O4 Cathode Material Using Synchrotron based in-situ X-ray Diffraction

  • Choi, Sol;Yoon, JeongBae;Muhammad, Shoaib;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • The structural and electrochemical properties of $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ ($Fd{\bar{3}}m$, disordered spinel) cathode material were studied and compared with stoichiometric $LiNi_{0.5}Mn_{1.5}O_4$ ($P4_332$, ordered spinel). First cycle discharge capacity of $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ was similar to that of $LiNi_{0.5}Mn_{1.5}O_4$ at C/3 and 1C rate, but cycling performance of $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ was better than that of $LiNi_{0.5}Mn_{1.5}O_4$ especially at high rate of 1C. This can be explained by performing synchrotron based in-situ XRD and results of GITT measurements. It is considered that faster lithium ion diffusion in the $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ cathode results in the improvement of the rate capability. To study structural changes during cycling, synchrotron in-situ XRD patterns of both the samples were recorded at C/3 and 1C rate. Compared to stoichiometric $LiNi_{0.5}Mn_{1.5}O_4$, disordered $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ spinel sample has pseudo one phase behavior and one step phase transition between two cubic phases. So, $LiNi_{0.5}Mn_{1.5}O_4$ would experience a much greater strain and stress, originating from the two phase transitions between three cubic phases and suffer from capacity loss during cycling especially at high rate.

Manufacturing and Electrochemical Characteristics of SnO2/Li4Ti5O12 for Lithium Ion Battery (리튬이차전지용 SnO2/Li4Ti5O12의 합성 및 전기화학적 특성)

  • Yang, A-Reum;Na, Byung-Ki
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.265-270
    • /
    • 2015
  • In order to increase the capacity of the lithium ion battery, the capacity of the anode should be increased. SnO2 and Li4Ti5O12 were studied to replace the graphite as the anode materials. In this study, SnO2/Li4Ti5O12 composite materials were synthesized by solid-state method. The study reported here attempts to enhance the electrochemical capacity of Li4Ti5O12 through the incorporation of SnO2. Sn-based Li ion storage materials are loaded on Li4Ti5O12 surface. The SnO2/Li4Ti5O12 composite material has higher capacity than Li4Ti5O12, but the cycling capacity was decreased due to SnO2.

Recovery of $LiCoO_2$ from Spent Lithium Ion batteries by using flotation (부유선별 기술을 이용한 폐리튬이온전지로부터 유가 금속의 회수)

  • Kim, Young-Hun;Kong, Bong-Sung;Lee, Sang-Hoon
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.173-177
    • /
    • 2005
  • 리튬이온 2차전지(Lithium ion battery, LIB)는 기존에 사용되던 전지에 비해 에너지 밀도가 높고 충방전 사이클이 우수하다. 이 때문에 휴대전화와 노트북 등에 수요가 급속하게 증가하고 있으며 1995년 LIB의 생산량은 4천만 개에서 2004년에는 약 8억 개로 20배 이상 증가하였다. 이에 따라 폐LIB도 급속하게 증가하게 되어 전국적인 재활용 시스템의 확보가 필요한 실정이다. 본 연구에서는 폐LIB에 함유되어 있는 유가금속 중에서 리튬코발트옥사이드(이하 $LiCoO_2$)를 회수하기 위하여 분쇄기(orient vertical cutting mill)와 진동 Screen을 사용하여 유기분리막, 금속류(Aluminium foil, Copper foil, case 등) 그리고 전극물질(lithium cobalt oxide와 graphite 등의 혼합 분말)로 분리하였다. 전극물질에서 $LiCoO_2$와 graphite 분리를 위한 전처리 단계로서 $500^{\circ}C$ 정도의 열처리를 하여 $LiCoO_2$의 표면 성질을 변화시켜 부유선별에 의해 $LiCoO_2$와 graphite의 분리가 가능하도록 하였다. 부유선별 실험 결과 93% 이상의 순도를 가지는 $LiCoO_2$를 92% 이상 회수할 수 있었다.

  • PDF