DOI QR코드

DOI QR Code

A Study on the Structural and Electrochemical Properties of Li0.99Ni0.46Mn1.56O4 Cathode Material Using Synchrotron based in-situ X-ray Diffraction

  • Choi, Sol (Department Of Energy Science, Sungkyunkwan University) ;
  • Yoon, JeongBae (Department Of Energy Science, Sungkyunkwan University) ;
  • Muhammad, Shoaib (Department Of Energy Science, Sungkyunkwan University) ;
  • Yoon, Won-Sub (Department Of Energy Science, Sungkyunkwan University)
  • Received : 2013.03.22
  • Accepted : 2013.03.26
  • Published : 2013.03.30

Abstract

The structural and electrochemical properties of $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ ($Fd{\bar{3}}m$, disordered spinel) cathode material were studied and compared with stoichiometric $LiNi_{0.5}Mn_{1.5}O_4$ ($P4_332$, ordered spinel). First cycle discharge capacity of $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ was similar to that of $LiNi_{0.5}Mn_{1.5}O_4$ at C/3 and 1C rate, but cycling performance of $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ was better than that of $LiNi_{0.5}Mn_{1.5}O_4$ especially at high rate of 1C. This can be explained by performing synchrotron based in-situ XRD and results of GITT measurements. It is considered that faster lithium ion diffusion in the $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ cathode results in the improvement of the rate capability. To study structural changes during cycling, synchrotron in-situ XRD patterns of both the samples were recorded at C/3 and 1C rate. Compared to stoichiometric $LiNi_{0.5}Mn_{1.5}O_4$, disordered $Li_{0.99}Ni_{0.46}Mn_{1.56}O_4$ spinel sample has pseudo one phase behavior and one step phase transition between two cubic phases. So, $LiNi_{0.5}Mn_{1.5}O_4$ would experience a much greater strain and stress, originating from the two phase transitions between three cubic phases and suffer from capacity loss during cycling especially at high rate.

Keywords

References

  1. K.mizushina, P. C. Jones, P. C. Wiseman and J. B. Goodenough, Mater. Res. Bull., 15, 783 (1980). https://doi.org/10.1016/0025-5408(80)90012-4
  2. K. Ozawa, Solid State Ionics, 69, 212 (1994). https://doi.org/10.1016/0167-2738(94)90411-1
  3. B. Huang, Y-I. Jang, Y-M. Chiang and D. R. Sadoway, J. Applied Electrochemistry, 28, 1365, (1998). https://doi.org/10.1023/A:1003443108681
  4. R. J. Gummow, A. de Kock and M. M. Thackeray, Solid State Ionics, 69, 59, (1994).
  5. D. I. Siapkas, C. L. Mitsas, I. Samaras and K. M. Paraskevopoulos, J. Power Sources, 72, 22, (1998).
  6. M. M. Doeff, A. Anapolsky, L. Edman, T. J. Richardson and L. C. De Jonghe, J. Electrochemical Society, 148, A230, (2001). https://doi.org/10.1149/1.1349883
  7. B. J. Hwang, R. Santhanam and S. G. Hu, J. Power Sources, 108, 250 (2002). https://doi.org/10.1016/S0378-7753(02)00023-X
  8. I. Yamada, T. Abe, Y. Iriyama and Z. Ogumi, Electrochem. Commun., 5, 502 (2003). https://doi.org/10.1016/S1388-2481(03)00113-9
  9. T. Ohzuku, M. Kitagawa and T. Hirai, J. Electrochem. Soc., 137, 769 (1990). https://doi.org/10.1149/1.2086552
  10. M. M. Thackeray, Prog. Solid State Chem. 1, 25 (1997).
  11. S. Kobayashi, I. R. M. Kottegoda, Y. Uchimoto and M. Wakihara, J. Mater. Chem., 14, 1843 (2004). https://doi.org/10.1039/b315443b
  12. F. K. Shokoohi, J. M. Tarascon and B. J. Wilkens, J. Appl. Phys., 59, 1260 (1991).
  13. K. H. Hwang, S. H. Lee and S. K. Joo, J. Electrochem. Soc., 141, 3296 (1994). https://doi.org/10.1149/1.2059329
  14. S. H. Park, K. S. Park, Y. K. Sun and K. S. Nahm, J. Electrochem.Soc., 147, 2116 (2000). https://doi.org/10.1149/1.1393494
  15. A. D. Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatuuci, B. Gernand and J. M.Tarascon, J. Electrochem. Soc., 146, 428 (1999). https://doi.org/10.1149/1.1391625
  16. D. H. Jang, Y. J. Shin and S. M. Oh, J. Electrochem.Soc., 143, 2204 (1996). https://doi.org/10.1149/1.1836981
  17. Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao and J. R. Dahn, J. Electrochem. Soc., 144, 205 (1997). https://doi.org/10.1149/1.1837386
  18. T. Ohzuku, S. Takeda and M. Iwanaga, J. Power Sources, 81-82, 90 (1999). https://doi.org/10.1016/S0378-7753(99)00246-3
  19. K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita, J. Electrochem. Soc., 143, 1607 (1996). https://doi.org/10.1149/1.1836686
  20. A. N. Mansour, C. A. Melendres, J. Phys. Chem. A, 102, 65 (1998). https://doi.org/10.1021/jp9619853
  21. S.-T. Myung, S. Komaba, N. Kumagai, H. Yashiro, H.-T Chung and T.-H. Cho, Electrochim. Acta, 47, 2543 (2002). https://doi.org/10.1016/S0013-4686(02)00131-7
  22. M. Kunduraci, J. F. Al-Sharab and G. G. Amaucci, Chem. Mater., 18, 3585 (2006). https://doi.org/10.1021/cm060729s
  23. Q-C. Zhuang, T. Wei, L-L. Du, Y-L. Cui, L. Fang and SG. Sun, J. Phys. Chem. C, 114, 8614 (2010). https://doi.org/10.1021/jp9109157
  24. C. H. Chen, E. M. Kelder and J. Schoonman, J. Mat. Sci. Lett., 16, 1967 (1997). https://doi.org/10.1023/A:1018563423213
  25. T. Yang, N. Zhang, Y. Lang and K. Sun, Electrochemica. Acta, 56, 4058 (2011). https://doi.org/10.1016/j.electacta.2010.12.109
  26. B. Markovsky, Y. Talyossef, G. Salitra and S. Choi, Electrochem. Commun., 6, 821 (2004). https://doi.org/10.1016/j.elecom.2004.06.005
  27. K. Y. Chung, H. S. Lee, W-S. Yoon, J. McBreen and XQ. Yang, J. Electrochem. Soc, 153, A774 (2006). https://doi.org/10.1149/1.2172565
  28. S. H. Park, S-W. Oh, S. H. Kang, I. Belharouk, K. Amine and Y-K. Sun, Electrochemica Acta, 52, 7226 (2007). https://doi.org/10.1016/j.electacta.2007.05.050
  29. R. Santhanam and B. Rambabu, J. Power Sources, 195, 5442 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.067

Cited by

  1. Effect of local structural changes on rate capability of LiNi 0.5 Mn 1.5 O 4−δ cathode material for lithium ion batteries vol.686, 2016, https://doi.org/10.1016/j.jallcom.2016.06.044
  2. Zr-doping effect on the capacity retention of LiNi 0.5 Mn 1.5 O 4–δ cycled between 5.0 and 1.0 V: In situ synchrotron X-Ray diffraction study vol.368, 2017, https://doi.org/10.1016/j.jpowsour.2017.09.056
  3. Electrochemical Performance of Carbon Coated LiMn2O4Nanoparticles using a New Carbon Source vol.7, pp.2, 2016, https://doi.org/10.5229/JECST.2016.7.2.139
  4. Surface-modified Li[Ni0.8Co0.15Al0.05]O2Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating vol.7, pp.4, 2016, https://doi.org/10.5229/JECST.2016.7.4.263
  5. In situ synchrotron study of ordered and disordered LiMn 1.5 Ni 0.5 O 4 as lithium ion battery positive electrode vol.116, 2016, https://doi.org/10.1016/j.actamat.2016.06.040
  6. Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating vol.7, pp.2, 2016, https://doi.org/10.5229/JECST.2016.7.2.179