• Title/Summary/Keyword: Li-M-O materials

Search Result 316, Processing Time 0.034 seconds

Electrochemical Properties of LiNi1-yMyO2(M=Zn2+, Al3+, and Ti4+) Synthesized by Milling and Solid-State Reaction Method (기계적 혼합과 고상법에 의해 합성한 LiNi1-yMyO2(M=Zn2+, Al3+, and Ti4+)의 전기화학적 특성)

  • Kim, Hunuk;Youn, SunDo;Lee, Jaecheon;Park, HyeRyoung;Song, Myoungyoup
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.352-358
    • /
    • 2005
  • By calcining at $750^{\circ}C$ for 30 h in $O_2$ stream after milling, $LiNi_{1-y}M_yO_2(M=Zn^{2+},\;Al^{3+}$, and $Ti^{4+}$, y = 0.005, 0.01, 0.025, 0.05, and 0.1) were synthesized and their electrochemical properties were investigated. All the samples had R3m structure. $LiNi_{1-y}Zn_yO_2$ (y = 0.025, 0.05, and 0.1) contained ZnO anuor $Li_2ZnO_2$ as impurities. Among the samples substituted with the same element, the samples with relatively large value of $I_{003}/I_{104}$ and the smallest R-factor had the largest first discharge capacity and good cycling performance. $LiNi_{0.975}A1_{0.025}O_2$ had the largest first discharge capacity (172.5 mAh/g) and good cycling performance (about $89.4\%$ of the first discharge capacity at the 20th cycle). This sample had the largest value of $I_{003}/I_{104}$ and the smallest R-factor among all the samples. In addition, the particles of this sample were finer and their size was more homogeneous than the other samples. $LiNi_{0.95}A1_{0.05}O_2$ had relatively large first discharge capacity 150.4 mAh/g and good cycling performance.

Chemical Vapor Deposition of β-LiGaO2 Films on Si(100) Using a Novel Single Precursor

  • Sung, Myung M.;Kim, Chang G.;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.480-484
    • /
    • 2004
  • $LiGaO_2$ films have been grown on Si (100) substrates using a new single precursor $[Li(OCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ under high vacuum conditions $(5{\times}10^{-6}Torr)$. The $[Li(OCH_2CH_2OCH_3)_2Ga(CH_3)_2]_2$ was synthe-sized and characterized by using spectroscopic methods and single-crystal X-ray diffraction analysis. The chemical composition, crystalline structure, and morphology of the deposited films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, and scanning electron microscopy. The results show that polycrystalline $LiGaO_2$ films preferentially oriented in the [010] direction can be deposited on Si (100) at 500-550$^{\circ}C$ by metal organic chemical vapor deposition (MOCVD). The single precursor $[LiOCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ has been found suitable for chemical vapor deposition of $LiGaO_2$ thin films on Si substrates.

Charge-discharge Properties of $LiMnO_2$ as a Function of Heat Treatment Temperature for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$의 열처리 온도에 따른 충방전 특성)

  • Cho, Young-Jai;Wee, Sung-Dong;Kim, Sang-Ki;Gu, Hal-Bon;Gu, Jong-Uk;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.23-26
    • /
    • 2001
  • The properties of $LiMnO_2$ was studied as a cathode active material for lithium polymer batteries. $LiMnO_2$ cathode active materials were synthesized by the reaction of $LiOH{\cdot}H_2O$ and $Mn_2O_3$ at various temperature under argon atmosphere. The powders were characterized by the X -ray diffraction. For lithium polymer battery applications, the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160~170 mAh/g for o-$LiMnO_2$ cell was achieved. The capacity of o-$LiMnO_2$ electrode demonstrated better than of the spinel $LiMnO_2$ by solid-state reaction.

  • PDF

Synthesis and Electrochemical Performance of Li2MnSiO4 for Lithium Ion Battery Prepared by Amorphous Silica Precusor (비정질 실리콘 산화물을 이용한 리튬망간실리콘산화물의 합성 및 전기화학적 특성 평가)

  • Jin, Yun-Ho;Lee, Kun-Jae;Kang, Lee-Seung;Jung, Hang-Chul;Hong, Hyun-Seon
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2012
  • Mass production-capable $Li_2MnSiO_4$ powder was synthesized for use as cathode material in state-of-the-art lithium-ion batteries. These batteries are main powder sources for high tech-end digital electronic equipments and electric vehicles in the near future and they must possess high specific capacity and durable charge-discharge characteristics. Amorphous silicone was quite superior to crystalline one as starting material to fabricate silicone oxide with high reactivity between precursors of sol-gel type reaction intermediates. The amorphous silicone starting material also has beneficial effect of efficiently controlling secondary phases, most notably $Li_xSiO_x$. Lastly, carbon was coated on $Li_2MnSiO_4$ powders by using sucrose to afford some improved electrical conductivity. The carbon-coated $Li_2MnSiO_4$ cathode material was further characterized using SEM, XRD, and galvanostatic charge/discharge test method for morphological and electrochemical examinations. Coin cell was subject to 1.5-4.8 V at C/20, where 74 mAh/g was observed during primary discharge cycle.

Reductive Leaching of $LiCoO_2$in a Sulfuric Acid Solution (황산용액서 $LiCoO_2$의 환원침출)

  • 이철경;김낙형
    • Resources Recycling
    • /
    • v.10 no.6
    • /
    • pp.9-14
    • /
    • 2001
  • A sulfuric acid leaching of $LiCoO_2$as cathodic active materials of lithium ion secondary batteries was investigated in terms of reaction variables. In the absence of a reducing agent, the extraction of cobalt was less than 40% in 2 M sulfuric acid at $75^{\circ}C$ instead of that of lithium could be almost 100% in the same conditions. To improve the Co extraction, hydrogen peroxide was used as a reducing agent in the range 2~20 vol%. When over 10vo1% hydrogen peroxide was added, the extractions of both metals were improved to about 95%. It seems to be due to the reduction of Co(III) to Co(II) that can be readily dissolved. The extractions of Co and Li were increased with increasing $H_2$$SO_4$concentration and temperature, and amount of hydrogen peroxide and with decreasing of pulp density. The optimum leaching conditions were determined at $2 M H_2$$SO_4$concentration, $75^{\circ}C$ operating temperature, 100 g/L. initial pulp density, 20 vol% $H_2$$O_2$addition and 30 min.

  • PDF

Charge/discharge Properties of $Li_2O-P_2O-V_2O_5$ Glasses as a Cathode Material for Lithium Rechargeable Battery (리튬 이차전지의 정극 물질로서 $Li_2O-P_2O-V_2O_5$ 유리의 충방전 특성)

  • 송희웅;구할본;손명모;이헌수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.383-386
    • /
    • 1999
  • The importance of rechargeable lithium cells has been emphasized. So a large variety of materials has been discovered and evaluated for use as reversible cathodes and electroyltes. This paper examines the charge/discharge properties and the charge/discharge cycling life of Li$_2$O-P$_2$O-V$_2$O$_{5}$Li cells. In audition, DTA tests were carried out on Li$_2$O-P$_2$O-V$_2$O$_{5}$ glass. As a result the best performance was achieved when 0.3Li$_2$O-0.1P$_2$O$_{5}$-0.6V$_2$O$_{5}$Li cells was mixed with SP270. that is discharge capacity of 240mAh/g have been achieved. In addition this battery exhibited good cycling performance. Considering these results we expected utilization of the Li$_2$O-P$_2$O-V$_2$O$_{5}$ glass as a cathode material in a secondary battery.y battery.

  • PDF

Ferroelectric domain inversion in $LiNbO_3$ crystal plate during heat treatment for Ti in-diffusion ($Ti:LiNbO_3$ 도파로 제작을 위한 열처리 과정 동안 강유전 도메인 특성에 미치는 영향)

  • Yang, W.S.;Lee, H.Y.;Kwon, S.W.;Kim, W.K.;Lee, H.Y.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.124-127
    • /
    • 2005
  • It is demonstrated that the annealing process for Ti in-diffusion to z-cut $LiNbO_3$ at temperature lower than the curie temperature in a platinum (Pt) box can cause a ferroelectric micro-domain inversion at the +z surface and Li out-diffusion, therefore which should be avoided or suppressed for waveguide type periodically poled lithium niobate (PPLN) devices. The depth of the inversion layer depends on the Ti-diffusion conditions such as temperature, atmosphere, the sealing method of $LiNbO_3$ in the Pt box and crystal orientation is experimentally examined. The result shows that the polarization-inverted domain boundary appears at the only +z surface and its thickness is about $1.6{\mu}m$. Also, for the etched $LiNbO_3$, surface the domain shape was observed by the optical microscope and atomic force microscopy (AEM), and distribution of the cation concentrations in the $LiNbO_3$ crystal by the secondary ion mass spectrometry (SIMS).

Figures of Merit of (K,Na,Li)(Nb,Ta)O3 Ceramics with Various Li Contents for a Piezoelectric Energy Harvester

  • Go, Su Hwan;Kim, Dae Su;Han, Seung Ho;Kang, Hyung-Won;Lee, Hyeung-Gyu;Cheon, Chae Il
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.530-534
    • /
    • 2017
  • The figures of merit in the on-resonance and off-resonance conditions ($FOM_{on}$ and $FOM_{off}$) for the piezoelectric energy harvester (PEH) were measured and compared in $[(K_{0.485}Na_{0.515})_{1-X}Li_X](Nb_{0.99}Ta_{0.01})O_3$ (x = 0.04 ~ 0.09) (KNLNT) ceramics with various Li contents. The crystal structure of CuO-doped KNLNT ceramics changes from orthorhombic to tetragonal around the Li fraction of 0.065. The stable temperature range for the tetragonal phase widens to both higher and lower temperatures as Li is substituted. The piezoelectric charge constant ($d_{33}$), electromechanical coupling factor ($k_p$) and mechanical quality factor ($Q_m$) have maximum values at the Li fraction between 0.055 and 0.065 where the phase boundary lies between the orthorhombic and tetragonal phases. Both $FOM_{on}$ and $FOM_{off}$ have peak values around the phase boundary but the peak compositions are not exactly coincided. The optimal Li fraction in the KNLNT ceramic for a PEH application was found to be between 0.055 and 0.065.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF