References
- J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimurac, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
-
J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, and F.-Z. Yao, "(K,Na)
$NbO_3$ -Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013). https://doi.org/10.1111/jace.12715 - J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, and T. Granzow, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
- T. Rodig, A. Schonecker, and G. Gerlach, "A Survey on Piezoelectric Ceramics for Generator Applications," J. Am. Ceram. Soc., 93 [4] 901-12 (2010). https://doi.org/10.1111/j.1551-2916.2010.03702.x
- S. Priya, "Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers," J. Electroceram., 19 [1] 165-82 (2007).
- I.-T. Seo, C.-H. Choi, D. Song, M.-S. Jang, B.-Y. Kim, S. Nahm, Y.-S. Kim, T.-H. Sung, and H.-C. Song, "Piezoelectric Properties of Lead-free Piezoelectric Ceramics and Their Energy Harvester Characteristics," J. Am. Ceram. Soc., 96 [4] 1024-28 (2013). https://doi.org/10.1111/jace.12227
- C. D. Richards, M. J. Anderson, D. F. Bahr, and R. F. Richard, "Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component," J. Micromech. Microeng., 14 [5] 717-21 (2004). https://doi.org/10.1088/0960-1317/14/5/009
- M. Umeda, D. Nakamura, and S. Ueha, "Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator," Jpn. J. Appl. Phys., 35 [5B] 3267-73 (1996). https://doi.org/10.1143/JJAP.35.3267
- Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 [4] 84-7 (2004). https://doi.org/10.1038/nature03028
- T. R. Shrout and S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19 [1] 111-24 (2007).
- J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
-
Y. Guo, K. Kakimoto, and H. Ohsato, "
$(Na_{0.5}K_{0.5})NbO_3-LiTaO_3 $ Lead-Free Piezoelectric Ceramics," Mater. Lett., 59 241-44 (2005). https://doi.org/10.1016/j.matlet.2004.07.057 -
J. Wua, D. Xiao, Y. Wang, J. Zhu, P. Yu, and Y. Jiang, "Compositional Dependence of Phase Structure and Electrical Properties in
$(K_{0.42}Na_{0.58})NbO_3-LiSbO_3$ Lead-Free Ceramics," J. Appl. Phys., 102 [11] 114113 (2007). https://doi.org/10.1063/1.2822454 -
J. Wu, T. Peng, Y. Wang, D. Xiao, J. Zhu, Y. Jin, J. Zhu, P. Yu, L. Wu, and Y. Jiang, "Phase Structure and Electrical Properties of
$(K_{0.48}Na_{0.52})(Nb_{0.95}Ta_{0.05})O_3-LiSbO_3 $ Lead-Free Piezoelectric Ceramics," J. Am. Ceram. Soc., 91 [1] 319-21 (2008). https://doi.org/10.1111/j.1551-2916.2007.02102.x -
D. Liu, H. Du, F. Tang, F. Luo, D. Zhu, and W. Zhou, "Effect of Heating Rate on the Structure Evolution of
$(K_{0.5}Na_{0.5})NbO_3-LiNbO_3$ Lead-Free Piezoelectric Ceramics," J. Electroceram., 20 [2] 107-11 (2008). https://doi.org/10.1007/s10832-007-9373-2 -
Z.-Y. Shen, J.-F. Li, K. Wang, S. Xu, W. Jiang, and Q. Deng, "Electrical and Mechanical Properties of Fine-Grained Li/Ta-Modified (Na,K)
$NbO_3$ -Based Piezoceramics Prepared by Spark Plasma Sintering," J. Am. Ceram. Soc., 93 [5] 1378-83 (2010). -
N. Klein, E. Hollenstein, D. Damjanovic, H. J. Trodahl, N. Setter, and M. Kuball, "A Study of the Phase Diagram of (K,Na,Li)
$NbO_3$ Determined by Dielectric and Piezoelectric Measurements, and Raman Spectroscopy," J. Appl. Phys., 102 [1] 014112 (2007). https://doi.org/10.1063/1.2752799 -
K. Wang, J.-F. Li, and N. Liu, "Piezoelectric Properties of Low-Temperature Sintered Li-Modified (Na, K)
$NbO_3$ Lead-Free Ceramics," Appl. Phys. Lett., 93 [9] 092904 (2008). https://doi.org/10.1063/1.2977551 -
J. B. Lim, S. Zhang, J.-H. Jeon, and T. R. Shrout, "(K,Na)
$NbO_3$ -Based Ceramics for Piezoelectric ''Hard'' Lead-Free Materials ," J. Am. Ceram. Soc., 93 [5] 1218-20 (2010). -
R. Huang, Y. Zhao, X. Zhang, Y. Zhao, R. Liu, and H. Zhou, "Low-Temperature Sintering of CuO-Doped 0.94
$(K_{0.48}Na_{0.535})$ $NbO_3-0.06LiNbO_3$ Lead-Free Piezoelectric Ceramics," J. Am. Ceram. Soc., 93 [12] 4018-21 (2010). https://doi.org/10.1111/j.1551-2916.2010.04227.x -
J. H. Kim, J. S. Kim, S. H. Han, H.-W. Kang, H.-G. Lee, and C. I. Cheon, "Low-Temperature Sintering and Piezoelectric Properties of CuO-Doped (K,Na)
$NbO_3$ Ceramics," Mater. Res. Bull., 96 [2] 121-25 (2017). https://doi.org/10.1016/j.materresbull.2017.03.066 -
J. H. Kim, J. S. Kim, S. H. Han, H.-W. Kang, H.-G. Lee, and C. I. Cheon, "(K,Na)
$NbO_3$ -Based Ceramics with Excess Alkali Oxide for Piezoelectric Energy Harvester," Mater. Res. Bull., 42 [4] 5226-30 (2016). -
T. Kudo, T. Yazaki, F. Naito, and S. Sugaya, "Dielectric and Piezoelectric Properties of
$Pb(Co_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ Solid Solution Ceramics," J. Am. Ceram. Soc., 53 [6] 326-28 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12117.x
Cited by
- Effect of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy Harvesting Performance pp.2093-6788, 2019, https://doi.org/10.1007/s13391-018-00103-w
- Stabilities and piezoelectric properties of morphotropic phase boundary composition 0.2Pb(Mg1/3Nb2/3)O3–0.38PbZrO3–0.42PbTiO3 ternary piezoceramics vol.54, pp.9, 2019, https://doi.org/10.1007/s10853-019-03365-3
- Features of the technology for producing multicomponent ferropiezoelectric materials vol.1967, pp.1, 2017, https://doi.org/10.1088/1742-6596/1967/1/012003