DOI QR코드

DOI QR Code

Figures of Merit of (K,Na,Li)(Nb,Ta)O3 Ceramics with Various Li Contents for a Piezoelectric Energy Harvester

  • Go, Su Hwan (Department of Materials Science and Engineering, Hoseo University) ;
  • Kim, Dae Su (Department of Materials Science and Engineering, Hoseo University) ;
  • Han, Seung Ho (Electronic Materials and Device Research Center, Korea Electronics Technology Institute) ;
  • Kang, Hyung-Won (Electronic Materials and Device Research Center, Korea Electronics Technology Institute) ;
  • Lee, Hyeung-Gyu (Electronic Materials and Device Research Center, Korea Electronics Technology Institute) ;
  • Cheon, Chae Il (Department of Materials Science and Engineering, Hoseo University)
  • Received : 2017.09.20
  • Accepted : 2017.10.25
  • Published : 2017.11.30

Abstract

The figures of merit in the on-resonance and off-resonance conditions ($FOM_{on}$ and $FOM_{off}$) for the piezoelectric energy harvester (PEH) were measured and compared in $[(K_{0.485}Na_{0.515})_{1-X}Li_X](Nb_{0.99}Ta_{0.01})O_3$ (x = 0.04 ~ 0.09) (KNLNT) ceramics with various Li contents. The crystal structure of CuO-doped KNLNT ceramics changes from orthorhombic to tetragonal around the Li fraction of 0.065. The stable temperature range for the tetragonal phase widens to both higher and lower temperatures as Li is substituted. The piezoelectric charge constant ($d_{33}$), electromechanical coupling factor ($k_p$) and mechanical quality factor ($Q_m$) have maximum values at the Li fraction between 0.055 and 0.065 where the phase boundary lies between the orthorhombic and tetragonal phases. Both $FOM_{on}$ and $FOM_{off}$ have peak values around the phase boundary but the peak compositions are not exactly coincided. The optimal Li fraction in the KNLNT ceramic for a PEH application was found to be between 0.055 and 0.065.

Keywords

References

  1. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimurac, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  2. J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, and F.-Z. Yao, "(K,Na)$NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013). https://doi.org/10.1111/jace.12715
  3. J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, and T. Granzow, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  4. T. Rodig, A. Schonecker, and G. Gerlach, "A Survey on Piezoelectric Ceramics for Generator Applications," J. Am. Ceram. Soc., 93 [4] 901-12 (2010). https://doi.org/10.1111/j.1551-2916.2010.03702.x
  5. S. Priya, "Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers," J. Electroceram., 19 [1] 165-82 (2007).
  6. I.-T. Seo, C.-H. Choi, D. Song, M.-S. Jang, B.-Y. Kim, S. Nahm, Y.-S. Kim, T.-H. Sung, and H.-C. Song, "Piezoelectric Properties of Lead-free Piezoelectric Ceramics and Their Energy Harvester Characteristics," J. Am. Ceram. Soc., 96 [4] 1024-28 (2013). https://doi.org/10.1111/jace.12227
  7. C. D. Richards, M. J. Anderson, D. F. Bahr, and R. F. Richard, "Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component," J. Micromech. Microeng., 14 [5] 717-21 (2004). https://doi.org/10.1088/0960-1317/14/5/009
  8. M. Umeda, D. Nakamura, and S. Ueha, "Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator," Jpn. J. Appl. Phys., 35 [5B] 3267-73 (1996). https://doi.org/10.1143/JJAP.35.3267
  9. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 [4] 84-7 (2004). https://doi.org/10.1038/nature03028
  10. T. R. Shrout and S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19 [1] 111-24 (2007).
  11. J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  12. Y. Guo, K. Kakimoto, and H. Ohsato, "$(Na_{0.5}K_{0.5})NbO_3-LiTaO_3 $Lead-Free Piezoelectric Ceramics," Mater. Lett., 59 241-44 (2005). https://doi.org/10.1016/j.matlet.2004.07.057
  13. J. Wua, D. Xiao, Y. Wang, J. Zhu, P. Yu, and Y. Jiang, "Compositional Dependence of Phase Structure and Electrical Properties in $(K_{0.42}Na_{0.58})NbO_3-LiSbO_3$ Lead-Free Ceramics," J. Appl. Phys., 102 [11] 114113 (2007). https://doi.org/10.1063/1.2822454
  14. J. Wu, T. Peng, Y. Wang, D. Xiao, J. Zhu, Y. Jin, J. Zhu, P. Yu, L. Wu, and Y. Jiang, "Phase Structure and Electrical Properties of $(K_{0.48}Na_{0.52})(Nb_{0.95}Ta_{0.05})O_3-LiSbO_3 $ Lead-Free Piezoelectric Ceramics," J. Am. Ceram. Soc., 91 [1] 319-21 (2008). https://doi.org/10.1111/j.1551-2916.2007.02102.x
  15. D. Liu, H. Du, F. Tang, F. Luo, D. Zhu, and W. Zhou, "Effect of Heating Rate on the Structure Evolution of $(K_{0.5}Na_{0.5})NbO_3-LiNbO_3$ Lead-Free Piezoelectric Ceramics," J. Electroceram., 20 [2] 107-11 (2008). https://doi.org/10.1007/s10832-007-9373-2
  16. Z.-Y. Shen, J.-F. Li, K. Wang, S. Xu, W. Jiang, and Q. Deng, "Electrical and Mechanical Properties of Fine-Grained Li/Ta-Modified (Na,K)$NbO_3$-Based Piezoceramics Prepared by Spark Plasma Sintering," J. Am. Ceram. Soc., 93 [5] 1378-83 (2010).
  17. N. Klein, E. Hollenstein, D. Damjanovic, H. J. Trodahl, N. Setter, and M. Kuball, "A Study of the Phase Diagram of (K,Na,Li)$NbO_3$ Determined by Dielectric and Piezoelectric Measurements, and Raman Spectroscopy," J. Appl. Phys., 102 [1] 014112 (2007). https://doi.org/10.1063/1.2752799
  18. K. Wang, J.-F. Li, and N. Liu, "Piezoelectric Properties of Low-Temperature Sintered Li-Modified (Na, K)$NbO_3$ Lead-Free Ceramics," Appl. Phys. Lett., 93 [9] 092904 (2008). https://doi.org/10.1063/1.2977551
  19. J. B. Lim, S. Zhang, J.-H. Jeon, and T. R. Shrout, "(K,Na)$NbO_3$-Based Ceramics for Piezoelectric ''Hard'' Lead-Free Materials ," J. Am. Ceram. Soc., 93 [5] 1218-20 (2010).
  20. R. Huang, Y. Zhao, X. Zhang, Y. Zhao, R. Liu, and H. Zhou, "Low-Temperature Sintering of CuO-Doped 0.94$(K_{0.48}Na_{0.535})$ $NbO_3-0.06LiNbO_3$ Lead-Free Piezoelectric Ceramics," J. Am. Ceram. Soc., 93 [12] 4018-21 (2010). https://doi.org/10.1111/j.1551-2916.2010.04227.x
  21. J. H. Kim, J. S. Kim, S. H. Han, H.-W. Kang, H.-G. Lee, and C. I. Cheon, "Low-Temperature Sintering and Piezoelectric Properties of CuO-Doped (K,Na)$NbO_3$ Ceramics," Mater. Res. Bull., 96 [2] 121-25 (2017). https://doi.org/10.1016/j.materresbull.2017.03.066
  22. J. H. Kim, J. S. Kim, S. H. Han, H.-W. Kang, H.-G. Lee, and C. I. Cheon, "(K,Na)$NbO_3$-Based Ceramics with Excess Alkali Oxide for Piezoelectric Energy Harvester," Mater. Res. Bull., 42 [4] 5226-30 (2016).
  23. T. Kudo, T. Yazaki, F. Naito, and S. Sugaya, "Dielectric and Piezoelectric Properties of $Pb(Co_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ Solid Solution Ceramics," J. Am. Ceram. Soc., 53 [6] 326-28 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12117.x

Cited by

  1. Effect of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy Harvesting Performance pp.2093-6788, 2019, https://doi.org/10.1007/s13391-018-00103-w
  2. Stabilities and piezoelectric properties of morphotropic phase boundary composition 0.2Pb(Mg1/3Nb2/3)O3–0.38PbZrO3–0.42PbTiO3 ternary piezoceramics vol.54, pp.9, 2019, https://doi.org/10.1007/s10853-019-03365-3
  3. Features of the technology for producing multicomponent ferropiezoelectric materials vol.1967, pp.1, 2017, https://doi.org/10.1088/1742-6596/1967/1/012003