• Title/Summary/Keyword: Li metal batteries

Search Result 120, Processing Time 0.03 seconds

Stretchable Current Collector Composing of DMSO-dopped Nano PEDOT:PSS Fibers for Stretchable Li-ion Batteries (신축성 리튬이온전지를 위한 DMSO 도핑 PEDOT:PSS 나노 섬유 집전체)

  • Kwon, O. Hyeon;Lee, Ji Hye;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.93-99
    • /
    • 2021
  • In order to decrease the weight of stretchable energy storage devices, interest in developing lightweight materials to replace metal current collectors is increasing. In this study, nanofibers prepared by electrospinning a conductive polymer, PEDOT:PSS, were used as current collectors for lithium ion batteries. The nanofiber showed improved electrical conductivity by using DMSO, a dopant, and indicated a stretch rate of 30% or more from the elasticity evaluation result. In addition, the use of the nanofiber current collector facilitates penetration of the liquid electrolyte and exhibits the effect of increasing the electronic conductivity through the nanofiber network. The lithium-ion battery using the DMSO-doped PEDOT:PSS@PAM nanofiber current collector indicated a high discharge capacity of 135mAh g-1, and indicated a high capacity retention rate of 73.5% after 1000 cycles. Thus, the excellent electrochemical stability and mechanical properties of conductive nanofibers showed that they can be used as lightweight current collectors for stretchable energy storage devices.

Synthesis of polycrystalline powder of $Li_xNi_{1-y}Co_yO_2$ via the PVA-precursor method : the effect of synthetic variation on the electrochemical property of the lithium ion battery (PVA-전구체법을 적용한 $Li_xNi_{1-y}Co_yO_2$ 다결정성 분말의 합성 : 합성조건에 따른 리튬이온전지의 전기화학적 특성 고찰)

  • Kim Sue Joo;Song Me Young;Kwon Hye Young;Park Seon Hui;Park Dong Gon;Kweon Ho-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.5-12
    • /
    • 1999
  • By the PVA-precursor method, polycrystalline powder of $Li_xNi_{1-y}Co_yO_2$, cathode material for lithium battery, was synthesized. Using the powder as the cathode material, lithium ion batteries were fabricated, whose electrochemical properties were measured. The effect of changing synthetic conditions, such as PvA/metal mole ratio, concentration of PVA, degree of polymerization of PVA, pyrolysis condition, and metal stoichiometry, on the battery performance was investigated. Considering the initial performance of the cell, the optimum stoichiometry of the $Li_xNi_{1-y}Co_yO_2$, synthesized by the PVA-precursor method was observed to be x: 1.0 and y=0.26. A minor phase of $Li_2CO_3$, which was generated by the residual carbon in the powder precursor, deteriorated the performance of the cell. In order to eliminate the minor phase, the precursor had to be pyrolyzed under the flow of dry air. Annealing the powder at $500^{\circ}C$ under the flow of dry air also eliminated the minor phase, and the performance of the cell was largely improved by the treatment.

Recycling of end-of-life LiNixCoyMnzO2 batteries for rare metals recovery

  • Sattar, Rabia;Ilyas, Sadia;Kousar, Sidra;Khalid, Amaila;Sajid, Munazzah;Bukhari, Sania Iqbal
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.88-95
    • /
    • 2020
  • An investigation of rare metals recovery from LiNixCoyMnzO2 cathode material of the end-of-life lithium-ion batteries is presented. To determine the influence of reductant on the leach process, the cathode material (containing Li 7.6%, Co 20.4%, Mn 19.4%, and Ni 19.3%) was leached in H2SO4 solutions either with or without H2O2. The optimal process parameters with respect to acid concentration, addition dosage of H2O2, temperature, and the leaching time were found to be 2.0 M H2SO4, 4 vol.% H2O2, 70℃, and 150 min, respectively. The yield of metal values in the leach liquor was > 99%. The leach liquor was subsequently treated by precipitation techniques to recover nickel as Ni(C4H7N2O2)2 and lithium as Li2CO3 with stoichiometric ratios of 2:1 and 1.2:1 of dimethylglyoxime:Ni and Na2CO3:Li, respectively. Cobalt was recovered by solvent extraction following a 3-stage process using Na-Cyanex 272 at pHeq ~5.0 with an organic-to-aqueous phase ratio (O/A) of 2/3. The loaded organic phase was stripped with 2.0 M H2SO4 at an O/A ratio of 8/1 to yield a solution of 114 g/L CoSO4; finally recovered CoSO4.xH2O by crystallization. The process economics were analyzed and found to be viable with a margin of $476 per ton of the cathode material.

Electrochemical properties of $TiO_2$/CNTs composite as anode materials for lithium secondary battery system (리튬이차전지용 음극물질 $TiO_2$/CNTs의 전기화학적 특성)

  • Oh, Mi-Hyun;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1363-1364
    • /
    • 2007
  • The composites such as Sn-CNTs, $SnSb_{0.5}$-CNTs and $CoSb_3$-CNTs have attracted much attention in the past years owing to their good overall properties. In these samples, intermetallic compounds show high specific capacities. Recently, interest in metal oxides such as $Al_{2}O_{3}$, MgO and $TiO_2$ has been largely stimulated by the realization that they can improve the cycling stability of the Li-ion battery electrodes. The reversible capacity of the $TiO_2$/CNTs composite reaches 168 mAh $g^{-1}$ at the first cycle and remains almost constant during long-term cycling. In this study, a nanocomposite of $TiO_2$/CNTs was prepared by sol-gel method and its electrochemical properties as anode materials for Li-ion batteries were studied by galvanostatic cycling, cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS).

  • PDF

Multi-Functional Dual-Layer Polymer Electrolytes for Lithium Metal Polymer Batteries

  • Lee, Young-Gi;Ryu, Kwang-Sun;Chang, Soon-Ho
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.285-291
    • /
    • 2004
  • We prepared a novel multi-functional dual-layer polymer electrolyte by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate $(LiPF_6)$ solution. The first layer, based on a microporous polyethylene, is incompatible with a liquid electrolyte, and the second layer, based on poly (vinylidenefluoride-co-hexafluoropropylene), is submicroporous and compatible with an electrolyte solution. The maximum ionic conductivity is $7{\times}10^{-3}S/cm$ at ambient temperature. A unit cell using the optimum polymer electrolyte showed a reversible capacity of 198 mAh/g at the 500th cycle, which was about 87% of the initial value.

  • PDF

Fabrication and electrochemical characterization of amorphous vanadium oxide thin films for thin film micro-battery by reactive r.f. sputtering (반응성 r.f. 스퍼터링에 의한 마이크로 박막 전지용 산화바나듐 박막의 제작 및 전기화학적 특성 평가)

  • 전은정;신영화;남상철;윤영수;조원일
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.42-47
    • /
    • 2000
  • The amorphous vanadium oxide thin films for thin-film rechargeable lithium batteries were fabricated by r.f. reactive sputtering at room temperature. As the experimental parameter, oxygen partial pressure was varied during sputtering. At high oxygen partial pressures(>30%), the as-deposited films, constant current charge/discharge characteristics were carried out in 1M $LiPF_6$, EC:DMC+1:1 liquid electrolyte using lithium metal as anode. The specific capacity of amorphous $V_2O_5$ after 200cycles of operation at room temperature was higher compared to crystalline $V_2O_5$. The amorphous vanadium oxide thin film and crystalline film showed about 60$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$ and about 38$\mu$Ah/$\textrm{cm}^2\mu\textrm{m}$, respectively. These results suggest that the battery capacity of the thin film vanadium oxide cathode strongly depends on the crystallinity.

  • PDF

Phase Evolution in LiMO2(M=Co,Ni) Cathode Materials for Secondary Lithium Ion Batteries : Effect of Temperature and Oxygen Partial Pressure (리튬 2차 전지용 양극활물질 LiMO2(M=Co,Ni)의 온도와 산소 분압에 따른 상전이 거동)

  • Huang, Cheng-Zhu;Kim, Ho-Jin;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.292-297
    • /
    • 2005
  • $LiMO_{2}(M=Co,Ni)$ samples were synthesized with $Li_{2}CO_{3},\;Co_{3}O_{4}$, and NiO by the solid-state reaction method. In the case of $LiCoO_{2}$, at low temperature$(T=400^{\circ}C)$ spinel structure was synthesized and the obtained spinel phase was transformed to layered phase at high temperature$(T\ge600^{\circ}C)$. The phase transition behaviors of $LiCoO_{2}$ were investigated with various heating temperature and time. The rate of transition was directly proportional to the concentrations of reactant, and activation energy of reaction was around 6.76 kcal/mol. When CoO(rock salt structure) was used as a starting material instead of $Co_{3}O_{4}$(spinel structure), layered structure of $LiCoO_{2}$ was obtained at low temperature. In the case of $LiNiO_{2}$ the transition from layered structure to rock salt structure occurred easily by disordering/ordering reaction, but did not occur in $LiCoO_{2}$. The difference in metal ion radii in $LiCoO_{2}$ and $LiNiO_{2}$ results in different behaviors of phase transitions.

Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries (리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향)

  • Im, Chae-Nam;Ahn, Tae-Young;Yu, Hye-Ryeon;Ha, Sang Hyeon;Yeo, Jae Seong;Cho, Jang-Hyeon;Yoon, Hyun-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode (리튬금속전극의 덴드라이트 성장 억제 방안의 연구 동향)

  • Kim, Yerang;Park, Jihye;Hwang, Yujin;Jung, Cheolsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.51-68
    • /
    • 2022
  • Although lithium metal batteries have a high energy density, experimental skills capable of solving lots of problems induced by dendrite such as short circuit, low coulomb efficiency, capacity loss, and cycle performance are still only in academic research stage. In this paper, research cases for dendrite growth inhibition on lithium metal electrode were classified into four types: flexible SEI (solid electrolyte interface) layer responding to volume expansion of lithium metal electrode, SEI supporting layer to inhibit dendrite growth physically, SHES (self-healing electrostatic shield) mechanism to adjust lithium growth by leading uniform diffusion of Li+ ions, and finally micro-patterning to induce uniform deposition of lithium. We hope to advance the practical use of lithium metal electrode by analyzing pros and cons of this classification.

Charge-discharge Characteristics of $LiCoO_2/Li$ Rechargeable Cell ($LiCoO_2/Li$ 2차전지의 충방전 특성)

  • Moon, S.I.;Doh, C.H.;Jeong, E.D.;Kim, B.S.;Park, D.W.;Yun, M.S.;Yeom, D.H.;Jeong, M.Y.;Park, C.J.;Yun, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.79-84
    • /
    • 1993
  • This paper describes the development of lithium rechargeable cell. $LiCoO_2$ is recently recognized as a suitable cathode active material of a high voltage, high energy lithium rechargeable batteries because $Li^+$ ion can be electrochemically deintercalated/intercalated from/to $Li_xCoO_2$. The transition metal oxide of $LiCoO_2$ was investigated for using as a cathode active material of 4V class Li rechargeable cell. $LiCoO_2$ cathode was prepared by using a active material of 85 wt%, graphite powder of 12 wt% as a conductor and poly-vinylidene fluoride of 3 wt% as a binder. The electrochemical and charge/discharge properties of $LiCoO_2$ were investigated by cyclic voltammetry and galvanostatic charge/discharge. The open circuit voltage of prepared $LiCoO_2$ electrode exhibited approximately. potential range between 3.32V and 3.42V. During the galvanostatic charge/discharge, $LiCoO_2/Li$ cell showed stable cycling behavior at scan rate of 1mV/sec and potential range between 3.6V and 4.2V. Also its coulombic efficiency as function of cycling was 81%~102%. In this study the $LiCoO_2/Li$ cell showed the available discharge capacity of 90.1 mAh/g at current density of $1mA/cm^2$ and cell discharge voltage range between 3.6V~4.2V.

  • PDF