• Title/Summary/Keyword: Lexical model

Search Result 100, Processing Time 0.028 seconds

Graph-Based Word Sense Disambiguation Using Iterative Approach (반복적 기법을 사용한 그래프 기반 단어 모호성 해소)

  • Kang, Sangwoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.102-110
    • /
    • 2017
  • Current word sense disambiguation techniques employ various machine learning-based methods. Various approaches have been proposed to address this problem, including the knowledge base approach. This approach defines the sense of an ambiguous word in accordance with knowledge base information with no training corpus. In unsupervised learning techniques that use a knowledge base approach, graph-based and similarity-based methods have been the main research areas. The graph-based method has the advantage of constructing a semantic graph that delineates all paths between different senses that an ambiguous word may have. However, unnecessary semantic paths may be introduced, thereby increasing the risk of errors. To solve this problem and construct a fine-grained graph, in this paper, we propose a model that iteratively constructs the graph while eliminating unnecessary nodes and edges, i.e., senses and semantic paths. The hybrid similarity estimation model was applied to estimate a more accurate sense in the constructed semantic graph. Because the proposed model uses BabelNet, a multilingual lexical knowledge base, the model is not limited to a specific language.

Development and Evaluation of a Document Summarization System using Features and a Text Component Identification Method (텍스트 구성요소 판별 기법과 자질을 이용한 문서 요약 시스템의 개발 및 평가)

  • Jang, Dong-Hyun;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.678-689
    • /
    • 2000
  • This paper describes an automatic summarization approach that constructs a summary by extracting sentences that are likely to represent the main theme of a document. As a way of selecting summary sentences, the system uses a model that takes into account lexical and statistical information obtained from a document corpus. As such, the system consists of two parts: the training part and the summarization part. The former processes sentences that have been manually tagged for summary sentences and extracts necessary statistical information of various kinds, and the latter uses the information to calculate the likelihood that a given sentence is to be included in the summary. There are at least three unique aspects of this research. First of all, the system uses a text component identification model to categorize sentences into one of the text components. This allows us to eliminate parts of text that are not likely to contain summary sentences. Second, although our statistically-based model stems from an existing one developed for English texts, it applies the framework to individual features separately and computes the final score for each sentence by combining the pieces of evidence using the Dempster-Shafer combination rule. Third, not only were new features introduced but also all the features were tested for their effectiveness in the summarization framework.

  • PDF

An Automatic Korean Word Spacing System for Devices with Low Computing Power (저사양 기기를 위한 한국어 자동 띄어쓰기 시스템)

  • Song, Yeong-Kil;Kim, Hark-Soo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.333-340
    • /
    • 2009
  • Most of the previous automatic word spacing systems are not suitable to use for mobile devices with relatively low computing powers because they require many system resources. We propose an automatic word spacing system that requires reasonable memory usage and simple numerical computations for mobile devices with low computing powers. The proposed system is a two step model that consists of a statistical system and a rule-based system. To reduce the memory usage, the statistical system first corrects word spacing errors by using a modified hidden Markov model based on character unigrams. Then, to increase the accuracy, the rule-based system re-corrects miscorrected word spaces by using lexical rules based on character bigrams or more. In the experiments, the proposed system showed relatively high accuracy of 94.14% in spite of small memory usage of about 1MB.

A Word Embedding used Word Sense and Feature Mirror Model (단어 의미와 자질 거울 모델을 이용한 단어 임베딩)

  • Lee, JuSang;Shin, JoonChoul;Ock, CheolYoung
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • Word representation, an important area in natural language processing(NLP) used machine learning, is a method that represents a word not by text but by distinguishable symbol. Existing word embedding employed a large number of corpora to ensure that words are positioned nearby within text. However corpus-based word embedding needs several corpora because of the frequency of word occurrence and increased number of words. In this paper word embedding is done using dictionary definitions and semantic relationship information(hypernyms and antonyms). Words are trained using the feature mirror model(FMM), a modified Skip-Gram(Word2Vec). Sense similar words have similar vector. Furthermore, it was possible to distinguish vectors of antonym words.

A New Similarity Measure for e-Catalog Retrieval Based on Semantic Relationship (의미적 연결 관계에 기반한 전자 카탈로그 검색용 유사도 척도)

  • Seo, Kwang-Hun;Lee, Sang-Goo
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.554-563
    • /
    • 2007
  • The e-Marketplace is growing rapidly and providing a more complex relationship between providers and consumers. In recent years, e-Marketplace integration or cooperation issues have become an important issue in e-Business. The e-Catalog is a key factor in e-Business, which means an e-Catalog System needs to contain more large data and requires a more efficient retrieval system. This paper focuses on designing an efficient retrieval system for very large e-Catalogs of large e-Marketplaces. For this reason, a new similarity measure for e-Catalog retrieval based on semantic relationships was proposed. Our achievement is this: first, a new e-Catalog data model based on semantic relationships was designed. Second, the model was extended by considering lexical features (Especially, focus on Korean). Third, the factors affecting similarity with the model was defined. Fourth, from the factors, we finally defined a new similarity measure, realized the system and verified it through experimentation.

A Test of Hierarchical Model of Bilinguals Using Implicit and Explicit Memory Tasks (이중언어자의 위계모형 검증 : 암묵기억과제와 외현기억과제의 효과)

  • 김미라;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.9 no.1
    • /
    • pp.47-60
    • /
    • 1998
  • The study was designed to investigate implicit and explicit memory effec representations of bilinguals. Hierarchical model of bilingual information processing word naming and translation tasks in the context of semantically categorized or rar Experiments 1 and 2, bilinguals first viewed stimulus words and performed naming or tr then implicit and explicit memory tasks. In experiment I, word recognition times(exp were significantly faster for semantic category condition than random category condi naming task and lexical decision taskOmplicit memory task)showed no difference in e experiment 2, naming task and exlicit memory task showed categorization effect but fOWE a and implcit memory task showed no categorization effect. These findings support the which posits that memory representations of bilinguals are composed of two independer a and one common conceptual store.

  • PDF

Ontology Selection Ranking Model based on Semantic Similarity Approach (의미적 유사성에 기반한 온톨로지 선택 랭킹 모델)

  • Oh, Sun-Ju;Ahn, Joong-Ho;Park, Jin-Soo
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.2
    • /
    • pp.95-116
    • /
    • 2009
  • Ontologies have provided supports in integrating heterogeneous and distributed information. More and more ontologies and tools have been developed in various domains. However, building ontologies requires much time and effort. Therefore, ontologies need to be shared and reused among users. Specifically, finding the desired ontology from an ontology repository will benefit users. In the past, most of the studies on retrieving and ranking ontologies have mainly focused on lexical level supports. In those cases, it is impossible to find an ontology that includes concepts that users want to use at the semantic level. Most ontology libraries and ontology search engines have not provided semantic matching capability. Retrieving an ontology that users want to use requires a new ontology selection and ranking mechanism based on semantic similarity matching. We propose an ontology selection and ranking model consisting of selection criteria and metrics which are enhanced in semantic matching capabilities. The model we propose presents two novel features different from the previous research models. First, it enhances the ontology selection and ranking method practically and effectively by enabling semantic matching of taxonomy or relational linkage between concepts. Second, it identifies what measures should be used to rank ontologies in the given context and what weight should be assigned to each selection measure.

  • PDF

The Unsupervised Learning-based Language Modeling of Word Comprehension in Korean

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.41-49
    • /
    • 2019
  • We are to build an unsupervised machine learning-based language model which can estimate the amount of information that are in need to process words consisting of subword-level morphemes and syllables. We are then to investigate whether the reading times of words reflecting their morphemic and syllabic structures are predicted by an information-theoretic measure such as surprisal. Specifically, the proposed Morfessor-based unsupervised machine learning model is first to be trained on the large dataset of sentences on Sejong Corpus and is then to be applied to estimate the information-theoretic measure on each word in the test data of Korean words. The reading times of the words in the test data are to be recruited from Korean Lexicon Project (KLP) Database. A comparison between the information-theoretic measures of the words in point and the corresponding reading times by using a linear mixed effect model reveals a reliable correlation between surprisal and reading time. We conclude that surprisal is positively related to the processing effort (i.e. reading time), confirming the surprisal hypothesis.

The Detection and Correction of Context Dependent Errors of The Predicate using Noun Classes of Selectional Restrictions (선택 제약 명사의 의미 범주 정보를 이용한 용언의 문맥 의존 오류 검사 및 교정)

  • So, Gil-Ja;Kwon, Hyuk-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • Korean grammar checkers typically detect context-dependent errors by employing heuristic rules; these rules are formulated by language experts and consisted of lexical items. Such grammar checkers, unfortunately, show low recall which is detection ratio of errors in the document. In order to resolve this shortcoming, a new error-decision rule-generalization method that utilizes the existing KorLex thesaurus, the Korean version of Princeton WordNet, is proposed. The method extracts noun classes from KorLex and generalizes error-decision rules from them using the Tree Cut Model and information-theory-based MDL (minimum description length).

A Study on the Intelligent Man-Machine Interface System: The Experiments of the Recognition of Korean Monotongs and Cognitive Phenomena of Korean Speech Recognition Using Artificial Neural Net Models (통합 사용자 인터페이스에 관한 연구 : 인공 신경망 모델을 이용한 한국어 단모음 인식 및 음성 인지 실험)

  • Lee, Bong-Ku;Kim, In-Bum;Kim, Ki-Seok;Hwang, Hee-Yeung
    • Annual Conference on Human and Language Technology
    • /
    • 1989.10a
    • /
    • pp.101-106
    • /
    • 1989
  • 음성 및 문자를 통한 컴퓨터와의 정보 교환을 위한 통합 사용자 인터페이스 (Intelligent Man- Machine interface) 시스템의 일환으로 한국어 단모음의 인식을 위한 시스템을 인공 신경망 모델을 사용하여 구현하였으며 인식시스템의 상위 접속부에 필요한 단어 인식 모듈에 있어서의 인지 실험도 행하였다. 모음인식의 입력으로는 제1, 제2, 제3 포르만트가 사용되었으며 실험대상은 한국어의 [아, 어, 오, 우, 으, 이, 애, 에]의 8 개의 단모음으로 하였다. 사용한 인공 신경망 모델은 Multilayer Perceptron 이며, 학습 규칙은 Generalized Delta Rule 이다. 1 인의 남성 화자에 대하여 약 94%의 인식율을 나타내었다. 그리고 음성 인식시의 인지 현상 실험을 위하여 약 20개의 단어를 인공신경망의 어휘레벨에 저장하여 음성의 왜곡, 인지시의 lexical 영향, categorical percetion등을 실험하였다. 이때의 인공 신경망 모델은 Interactive Activation and Competition Model을 사용하였으며, 음성 입력으로는 가상의 음성 피쳐 데이타를 사용하였다.

  • PDF