• Title/Summary/Keyword: Levitation Control

Search Result 286, Processing Time 0.03 seconds

A study and experiment on the stabilization characteristic and the stiffness in Active Magnetic Bearing (자기베어링시스템 강성의 실험적 고찰을 통한 안정화 특성에 관한 연구)

  • 강성구;강종규;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.388-392
    • /
    • 2004
  • Due to the lack of stiffness and difficulties of control, it is hard to achieve well balanced magnetic levitation. In this paper, we analysis the current and position stiffness change according to bias current through experiment. Then, compensation equations were presented. After obtaining PD gain for each bias current and PD gain region through levitation experiment, we consider the characteristics.

  • PDF

Characteristics Analysis of Magnetic Levitation Conroller (자기부상제어기의 특성해석)

  • Kim, Jong-Moon;Kim, Choon-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.735-736
    • /
    • 2006
  • In this paper, the characteristics analysis results of the levitation controller of magnetically-levitated vehicle are presented. To get a good closed-loop system, the observer and controller must be designed to meet the control performance and ride quality requirements. So the transfer functions of the observer filter are described and analysed by using the relative and absolute signal concepts.

  • PDF

Magnet Design for Maglev Clean Lift (자기부상 클린 리프트용 마그네트 설계)

  • Kim, Jong-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1049-1050
    • /
    • 2007
  • In this paper, an electromagnet which is used in maglev(magnetic levitation) clean lift is designed and described. The electromagnet is firstly designed by using FEM(finite element method) tool and the simulation results are presented. The nominal airgap is 5mm and the nominal current is 2A. Also, the nominal magnetic force is 200N. From the results, we can get the electromagnet as an actuator used in maglev(magnetic levitation) clean lift for LCD process.

  • PDF

Design and Characteristic Analysis of a Linear Motor for Magnetic Levitation (자기부상 stage 구동 리니어 모터의 설계 및 특성해석)

  • Kang, Gyu-Hong;Ahn, Ho-Jin;Hong, Jung-Pyo;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.9-11
    • /
    • 2001
  • This paper deals with design and characteristic analysis of a permanent magnet linear synchronous motor for magnetic levitation stage of semi-conductor manufacture machine. In order to improve the control performance by detent force minimization, skew and PM offset method are used.

  • PDF

Vibration characteristics between levitation air-gap and switching system girders (상전도 흡인식 자기부상열차 분기기 주행시의 부상공극변동과 분기기 거더의 진동 특성)

  • Shin, Hyeon-Jae;Lee, Jong-Min;Choi, Jang-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.824-829
    • /
    • 2011
  • EMS-type Maglev vehicle maintains constant levitation air-gap between electromagnet and guideway by using gap sensor. The other words, when Maglev vehicles levitating over the guideway, mass of the vehicle effects through 1st (electromagnetic air-gap control) and 2nd (air-spring) suspension to grider. Resonace between electromagnetic suspension and grider could be occurred, which causes instability and poor ridecomfort. This paper is to test the dymanic interaction between levitation air-gap and switching system grider that has less mass and high natural frequencies than other type of general girders.

  • PDF

Modeling of Linear Switched Reluctance Motor for Self Levitation and Propulsion (자기부상/추진 일체화를 위한 선형 스위치드 릴럭턴스 모터의 모델링)

  • Sung, So-Young;Cho, Han-Wok;Sung, Ho-Kyoung;Jang, Seok-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.95-97
    • /
    • 2007
  • This paper proposes a mathematical modelling about Leviation Force and Propulsion Force in a system, where Primary and Secondary LSRM air-gap is irregular. This can be a suitable model for Magnetically levitation Train, where Primary and Secondary air-gap mechanically has to control simultaneously Levitation Force and Propulsion Force.

  • PDF

Development of Rotary Actuator Including Function of Axial Bearing (축방향 베어링 통합 회전 구동기의 개발)

  • 허진혁;정광석;백윤수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1083-1086
    • /
    • 2003
  • Recently, the study on bearingless motors which integrate both motor and magnetic bearing function in one stator is very active, as many machines have high rotational speed, high precision, smaller size and lighter weight. In this paper, we propose a novel rotary actuator including function of axial bearing using Lorentz force as a preceding research for development of a bearingless motor. As using Lorentz force, this type has some merits such as the linearity of control force, freedom from flux saturation and high efficiency unlike conventional rotary actuators using a reluctance force. This type is cotrolled independently in levitation and rotational directions respectively. It shows by mathematical expression of levitation force and torque in the proposed rotary actuator. And also, the levitation force is generated by magnetic interaction between the magnetic materials and the rotational torque is generated by Lorentz force. Finally. for verification of this proposed system, a prototype is made and some experiments will be performed in the near future.

  • PDF

Performance Improvement of Magnetic Levitation System by CdS Sensor Compensation (CdS센서의 보상에 의한 자기부상 시스템의 성능 개선)

  • 나승유;최윤영;박민상;윤두현;정병두
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1133-1136
    • /
    • 1999
  • A magnetic levitation control system is inherently nonlinear and very unstable. Thus there should be a stabilizing compensator network and a negative feedback path using noncontact photoresistor or ultrasonic sensors for the levitation operation. Since the photo sensor plays a key role in the system, the steady-state error and transient performance of the overall system depend on the characteristics of the sensors. But the sensor itself also suffers from nonlinearity, and the magnitude of sensor input heavily depends on environmental conditions. To improve the output performance, we added a linearizing circuit for the sensor characteristics and a disturbance cancelation circuit to avoid sensitive output due to extraneous interfering light.

  • PDF

A Robust Observer Design of Ma4gentic Levitation System using Sliding Mode Method (슬라이딩모드기법을 이용한 자기부상시스템의 강인한 관측기 설계)

  • 이대종;김주식;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.67-73
    • /
    • 2002
  • This paper presents a sliding mode observer and Controller far the state estimation and the dynamic stabilization of the magnetic levitation systems. The proposed striding mode observer is constructed by means of Lyapunov stability theorem to decrease the observer error, and the sliding rode controller is designed by a linear combination of the equivalent and nonlinear control input for the estimated states. The feasibilities of the suggested design method are illustrated with the simulation results.

Test method study about characteristic of static states for Maglev LIM (자기부상열차용 선형유도전동기 정특성 시험방법에 대한 연구)

  • Kim, Jung-Chul;Kim, Bong-Chul;Kim, Dea-Kwang;Park, Yeong-Ho;Kim, Chul-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.549-554
    • /
    • 2008
  • The recent trains are almost being operated by the mechanical propulsion force to drive the gear and wheel with the traction motor. However Magnetic Levitation Vehicle is differently operated. Magnetic Levitation Vehicle is applied with Linear Induction Motor(LIM) that has many advantage like to high capability of going up to slope, low noise, easy to control of speed. So domestic and many advanced countries are interested in Magnetic Levitation Vehicle and they have been studying about it continuously. Thus this paper is studied the LIM test method of static states and guess the optimum driving point by characteristic of static states for LIM. The test items are measurement of thrust force by changed air gap, measurement of thrust force and normal force by changed slip frequency etc.

  • PDF