• Title/Summary/Keyword: Level-crossing

Search Result 259, Processing Time 0.023 seconds

A Study on the Performance Improvement of Digital Phase-Locked Loop Using a Half Period Sampling (반주기 표본화를 이용한 디지탈 위상동기회로의 성능개선에 관한 연구)

  • 최영준;강철호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.5
    • /
    • pp.478-491
    • /
    • 1987
  • In this paper, an all Digital Phase-Locked Loop(DPLL) has been propoed, which has reduced the phase error by using a half period sampling in order to improve the performance of the conventional DPLL which tracks the phase of incoming sinusoidal signal once per cycle for the Positive Going Zero crossing(PGZC) of the signal. The proposed DPLL tracks the phase of input signal twice per cycle with two samplers for the PGZC. So the loop has a half reduction of the steady state phase error fluctuation ranges without decreasing the lock-range in a whole, comparing with that of the conventional DPLL. Also, it has been known that the proposed loop is rapidly locked to input signal for the same valves of phase differenc between sucessive samples and quantization level. The analytic results of the proposed loop have been verified by computer simulation for the practically requeired conditions.

  • PDF

Safety Evaluation Method for Ground Ammunition and Explosive Storage Facilities due to Underground Tunnel Blast (지하시설 굴착공사에 따른 탄약저장시설 안전성 평가방법 연구)

  • Park, Sangwoo;Kim, Kuk-Joo;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.331-339
    • /
    • 2019
  • Recently, expansion of urban and social infrastructures is planned to go through the transfer of military facilities or crossing the infrastructures via underground tunnels. However, when crossing facilities such as ammunition and explosive storages, a high level of safety assessment is required to prevent an accidental explosion of ground ammunition. In this study, a case study was conducted to evaluate the effect of blasting for the construction of tunnel on the ground ammunition facilities. The design section of Sinansan train operated by the Korea Railroad Authority with agreement of the Ministry of National Defense was selected. For the purpose of this study, the vibration velocity due to explosion was predicted by using GTS-NX, a numerical analysis program. Through literature review, it was confirmed that the vibration velocity of 0.2cm/sec can be a safety evaluation standard. These safety evaluation indicators and procedures used in this study can be utilized as an index of safety evaluation in the planning of social infrastructures that cross the ammunition facilities in the future.

A Failure Probability Estimation Method of Nonlinear Bridge Structures using the Non-Gaussian Closure Method (Non-Gaussian Closure 기법을 적용한 비선형 교량 구조계의 파괴확률 추정 기법)

  • Hahm, Dae-Gi;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • A method is presented for evaluating the seismic failure probability of bridge structures which show a nonlinear hysteretic dynamic behavior. Bridge structures are modeled as a bilinear dynamic system with a single degree of freedom. We regarded that the failure of bridges will occur when the displacement response of a deck level firstly crosses the predefined limit state during a duration of strong motion. For the estimation of the first-crossing probability of a nonlinear structural system excited by earthquake motion, we computed the average frequency of crossings of the limit state. We presented the non-Gaussian closure method for the approximation of the joint probability density function of response and its derivative, which is required for the estimation of the average frequency of crossings. The failure probabilities are estimated according to the various artificial earthquake acceleration sets representing specific seismic characteristics. For the verification of the accuracy and efficiency of presented method, we compared the estimated failure probabilities with the results evaluated from previous methods and the exact values estimated with the crude Monte-Carlo simulation method.

Characteristic Analysis of Multicell Convective System that Occurred on 6 August 2013 over the Korean Peninsula (2013년 8월 6일 한반도에서 발달한 다세포(Multicell) 대류계의 특성 분석)

  • Yoon, Ji-Hyun;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.321-336
    • /
    • 2016
  • Damages caused by torrential rain occur every year in Korea and summer time convection can cause strong thunderstorms to develop which bring dangerous weather such as torrential rain, gusts, and flash flooding. On 6 August 2013 a sudden torrential rain concentrated over the inland of Southern Korean Peninsula occurred. This was an event characterized as a mesoscale multicellular convection. The purpose of this study is to analyze the conditions of the multicellular convection and the synoptic and mesoscale nature of the system development. To this end, dynamical and thermodynamic analyses of surface and upper-level weather charts, satellite images, soundings, reanalysis data and WRF model simulations are performed. At the beginning stage there was a cool, dry air intrusion in the upper-level of the Korean Peninsula, and a warm humid air flow from the southwest in the lower-level creating atmospheric instability. This produced a single cell cumulonimbus cloud in the vicinity of Baengnyeongdo, and due to baroclinic instability, shear and cyclonic vorticity the cloud further developed into a multicellular convection. The cloud system moved southeast towards Seoul metropolitan area accompanied by lightning, heavy precipitation and strong wind gusts. In addition, atmospheric instability due to daytime insolation caused new convective cells to develop in the upstream part of the Sobaek Mountain which merged with existing multicellular convection creating a larger system. This case was unusual because the system was affected little by the upper-level jet stream which is typical in Korea. The development and propagation of the multicellular convection showed strong mesoscale characteristics and was not governed by large synoptic-scale dynamics. In particular, the system moved southeast crossing the Peninsula diagonally from northwest to southeast and did not follow the upper-level westerly pattern. The analysis result shows that the movement of the system can be determined by the vertical wind shear.

Impacts of Photoperiod and Maternal Pineal Gland on Pre- and Post-natal development of Indian palm Squirrel F. pennanti

  • Haldar, C.;Bishnupuri, K.S.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.29-32
    • /
    • 2002
  • Studies till date suggest the existence of a fetal biological clock in suprachiasmatic nuclei entrained by the circadian signal from mother. Melatonin from maternal pineal gland reaches to the fetus by crossing every biological barrier including placenta, hence fetuses were exposed to similar melatonin variation as their mother. Experimental modulations of maternal pineal gland activity of pregnant females either by exposing the them to different photoperiodic schedules or by exogenous melatonin treatments till the date of parturition, regulated the fetal plasma level of melatonin, thereby the prenatal (fetal) growth and development. This clearly suggests the maternal transport of melatonin to their fetus through placenta since fetal retina-hypothalamic tract was incomplete. An extension of experimental schedules till 60 days of post-partum period regulated the neonatal pineal gland activity and gonadal maturation along with their plasma levels of melatonin and sex steroids suggesting clearly the phenomenon of maternal transfer of melatonin to their young ones during the post-natal period, when the neonates were solely dependent on the mother's milk for their nutrition and energetic demands. On the basis of above observations we may suggest that the maternal pineal gland activity regulate the prenatal development by passing its melatonin to fetus via placenta and post-natal growth and sexual maturation by passing maternal melatonin to neonates via milk. Hence, the photoperiod perceived by mother is translated into the maternal plasma level of melatonin which not only regulates the prenatal but also the post-natal growth and sexual maturation of neonates.

  • PDF

The Comparison of Sensitivity of Numerical Parameters for Quantification of Electromyographic (EMG) Signal (근전도의 정량적 분석시 사용되는 수리적 파라미터의 민감도 비교)

  • Kim, Jung-Yong;Jung, Myung-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.330-335
    • /
    • 1999
  • The goal of the study is to determine the most sensitive parameter to represent the degree of muscle force and fatigue. Various numerical parameters such as the first coefficient of Autoregressive (AR) Model, Root Mean Square (RMS), Zero Crossing Rate (ZCR), Mean Power Frequency (MPF), Median Frequency (MF) were tested in this study. Ten healthy male subjects participated in the experiment. They were asked to extend their trunk by using the right and left erector spinae muscles during a sustained isometric contraction for twenty seconds. The force levels were 15%, 30%, 45%, 60%, and 75% of Maximal Voluntary Contraction (MVC), and the order of trials was randomized. The results showed that RMS was the best parameter to measure the force level of the muscle, and that the first coefficient of AR model was relatively sensitive parameter for the fatigue measurement at less than 60% MVC condition. At the 75% MVC, however, both MPF and the first coefficient of AR Model showed the best performance in quantification of muscle fatigue. Therefore, the sensitivity of measurement can be improved by properly selecting the parameter based upon the level of force during a sustained isometric condition.

  • PDF

Evaluation and future predictions of air pollutants level in Karachi city

  • Mukwana, Kishan Chand;Samo, Saleem Raza;Jakhrani, Abdul Qayoom;Tunio, Muhammad Mureed;Jatoi, Abdul Rehman
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • The purpose of this study was to determine the present air pollutant concentrations and predicted levels for next 30 years in urban environment of Karachi city. For that, a total of fifty measurements were made for each twenty selected locations of the city. The locations were selected on the basis of land use pattern such as residential, commercial, industrial settlements, open areas, congested traffic and low traffic areas for investigation of air pollutants variability and intensity. The measurements were taken continuously for six months period using PM Meter, Model AEROCET 531 and Ambient Air Quality Meter, Model AAQ 7545. The concentration of air pollutants were found higher at Al Asif Square and Maripur Road due to higher intensity of traffic and at Korangi Crossing because of industrial areas. The level of pollutants was lower at Sea View owing to lower traffic congestion and transportation of pollutants by sea breezes.

Analysis on the Characteristics of the Ride Comfort for High Speed Trains on the High Speed Line/conventional Line (고속선/기존선 운행에 따른 고속철도 차량의 승차감 특성 분석)

  • 김석원;박찬경;김기환;박태원;김영국
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.999-1006
    • /
    • 2004
  • Recently, the ride comfort problem becomes increasingly important because of today's needs for train speedup. The railway has the track irregularities which cause vibrations, such as rail joints, turnout, level crossing, transition corves and super-elevation ramps, and variations in the track level(z-axis) and the gauge(y-axis). In Korea, the service run of the high speed train has been made since the 1st of April, 2004. The commercial high-speed trains must be run on the compound lines which are composed of high-speed line and conventional line. The high speed lines in both Kyoungbu line and Honam line have 57.5% and 33.8%, respectively In this Paper, the ride comfort has been reviewed by the various experimental methods when the high-speed trains are operated on both Kyoungbu line and Honam line. The results show that the high-speed train has no problems from the viewpoint of the comfort ride during the operation on the high speed line and conventional line.

Electronic Structure and Bonding in the Ternary Silicide YNiSi3

  • Sung, Gi-Hong;Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.325-333
    • /
    • 2003
  • An analysis of the electronic structure and bonding in the ternary silicide YNiSi₃is made, using extended Huckel tight-binding calculations. The YNiSi₃structure consists of Ni-capped Si₂dimer layers and Si zigzag chains. Significant bonding interactions are present between the silicon atoms in the structure. The oxidation state formalism of $(Y^{3+})(Ni^0)(Si^3)^{3-}$ for YNiSi₃constitutes a good starting point to describe its electronic structure. Si atoms receive electrons from the most electropositive Y in YNiSi₃, and Ni 3d and Si 3p states dominate below the Fermi level. There is an interesting electron balance between the two Si and Ni sublattices. Since the ${\pi}^*$ orbitals in the Si chain and the Ni d and s block levels are almost completely occupied, the charge balance for YNiSi₃can be rewritten as $(Y^{3+})(Ni^{2-})(Si^{2-})(Si-Si)^+$, making the Si₂layers oxidized. These results suggest that the Si zigzag chain contains single bonds and the Si₂double layer possesses single bonds within a dimer with a partial double bond character. Strong Si-Si and Ni-Si bonding interactions are important for giving stability to the structure, while essentially no metal-metal bonding exists at all. The 2D metallic behavior of this compound is due to the Si-Si interaction leading to dispersion of the several Si₂π bands crossing the Fermi level in the plane perpendicular to the crystallographic b axis.

Airspace Safety Assessment for Implementation of the Japanese Domestic Reduced Vertical Separation Minimum

  • Amai, Osamu;Nagaoka, Sakae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.435-440
    • /
    • 2006
  • The Reduced Vertical Separation Minimum (RVSM), which is the reduced minimum from 2,000 ft to 1,000 ft at flight levels (FL) between 290 and FL410 inclusive, was implemented in 30 September 2005 within the Japanese domestic airspace. Prior to the implementation, safety assessment for the airspace in assumed RVSM environments was carried out. Some model parameter values of collision risk model were estimated using flight plan (progress) data and radar data. An estimate of vertical collision risk including operational risk was calculated using these together with given parameter values. The results obtained from this analysis are as follows. (1) Contribution of the vertical collision risk for the crossing routes is about 9 percents of the total technical risk. (2) The estimate of the collision risk is $4.1{\times}10^{-9}$ [fatal accidents / flight hour] and the value is smaller than a maximum allowable level of collision risk, i.e. $5{\times}10^{-9}$ [fatal accidents / flight hour], called the Target Level of Safety.

  • PDF