• Title/Summary/Keyword: Lethal Envelope

Search Result 6, Processing Time 0.017 seconds

Investigation of IR Survivability of Unmanned Combat Aerial Vehicle against Surface-to-Air Missiles (무인전투기의 지대공 미사일에 대한 IR 생존성 분석)

  • Lee, Ji-Hyun;Lee, Hyun-Jin;Myong, Rho-Shin;Choi, Seong-Man;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1084-1093
    • /
    • 2017
  • As the survivability of an aircraft in the battlefield becomes a critical issue, there is a growing need to improve the survivability of the aircraft. In this study, the survivability of an UCAV associated with plume IR signature was investigated. In order to analyze the survivability of the aircraft, the lock-on range and the lethal envelope, defined as the IR detection distance of the aircraft and the range of shooting down by the missile, respectively, were first introduced. Further, a method to calculate the lethal envelope for the scenario of surface-to-air missiles including the vertical plane was developed. The study confirmed that the red zone of an UCAV shows a substantial difference in the zone size as well as the characteristics in the upward and downward directions.

Susceptibility Analysis of Supersonic Aircraft Considering Drag Force of Infrared Guided Missile (공대공 적외선 미사일의 항력을 고려한 초음속 항공기의 피격성 분석)

  • Kim, Taeil;Kim, Taehwan;Lee, Hwanseong;Bae, Ji-Yeul;Jung, Dae Yoon;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.255-263
    • /
    • 2017
  • An infrared-guided missile has been emerging as a major threat against combat aircraft due to its passive guidance characteristics and with recent advances in stealth technology. Hence, the infrared stealth technology and its effectiveness-evaluation technique become more significant than ever before. In this study, we applied missile aerodynamics to lethal range calculation which allowed more precise prediction. CFD analyses were newly involved in estimating drag force characteristics of an infrared-guided missile. Velocity profiles during flight period of the missile were constructed utilizing these drag characteristics and then incorporated into our in-house code to predict corresponding lethal ranges. The results showed that the present method can predict lethal range more appropriately than the previous one with constant velocity profile. As one of the results, if a fighter gains altitude more which reduces less drag of the attacking missile, then the lethal envelope increases significantly more compared to the lock-on envelope.

Morphological, Phylogenetic and Biological Characteristics of Ectropis obliqua Single-Nucleocapsid Nucleopolyhedrovirus

  • Ma Xiu-cui;Xu Hai-Jun;Tang Mei-Jun;Xiao Qiang;Hong Jian;Zhang Chuan-Xi
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.77-82
    • /
    • 2006
  • The tea looper caterpillar, Ectropis obliqua, is one of the major pests of tea bushes. E. obliqua single-nucleocapsid nucleopolyhedrovirus (EcobSNPV) has been used as a commercial pesticide for biocontrol of this insect. However only limited genetic analysis for this important virus has been done up to now. EcobSNPV was characterized in this study. Electron microscopy analysis of the occlusion body showed polyhedra of 0.7 to $1.7\;{\mu}m$ in diameter containing a single nucleocapsid per envelope of the virion. A 15.5 kb genomic fragment containing EcoRI-L, EcoRI-N and HindIII-F fragments, was sequenced. Analysis of the sequence revealed that the fragment contained eleven potential open reading frames (ORFs): lef-1, egt, 38.7k, rrl, polyhedrin, orfl629, pk-1, hoar and homologues to Spodoptera exigua multicapsid NPV (SeMNPV) ORFs 15, 28, and 29. Gene arrangement and phylogeny analysis suggest that EcobSNPV is closely related to the previously described Group II NPV. Bioassays on lethal concentration $(LC_{50}\;and\;LC_{90})$ and lethal time $(LT_{50}\;and\;LT({90})$ were conducted to test the susceptibility of E. obliqua larvae to the virus.

Investigation of the Effects of UAV Nozzle Configurations on Aircraft Lock-on Range (무인항공기의 노즐 형상 변화가 Lock-on Range에 미치는 영향에 관한 연구)

  • Kim, Min-Jun;Kang, Dong-Woo;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.204-212
    • /
    • 2015
  • The infrared lock-on range of target aircraft plays a critical role in determining the aircraft survivability. In this investigation, the effects of various UAV engine nozzle configurations on the aircraft lock-on range were theoretically analyzed. A virtual subsonic aircraft was proposed first, based on the mission requirement and the engine performance analysis, and convergent-type nozzles were then designed. After determining thermal flow field and nozzle surface temperature distribution with the CFD code, an additional analysis was conducted to predict the IR signature. Also, atmospheric transmissivity for various latitude and seasons was calculated, using the LOWTRAN code. Finally, the lock-on and lethal envelopes were calculated for different nozzle configurations, assuming the sensor threshold of the given IR guided missile. It was shown that the maximum 55.3% reduction in lock-on range is possible for deformed nozzles with the high aspect ratio.

Characterization of Mamestra brassicae Nucleopolyhedrovirus (MabrNPV)-K1 Isolated in Korea

  • Lee, Jae-Kyung;Shin, Tae-Young;Bae, Sung-Min;Choi, Jae-Bang;Oh, Jeong-Mi;Koo, Hyun-Na;Kim, Ju-Il;Kwon, Min;Woo, Soo-Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.17 no.1
    • /
    • pp.125-129
    • /
    • 2008
  • The purpose of this study was to investigate the characteristics of Mamestra brassicae nucleopolyhedrovirus (MabrNPV)-K1 isolated in Korea. Polyhedra of MabrNPV-K1 showed irregular appearance in shape with the average diameter $1.8{\mu}m$. MabrNPV-K1 contained a number of nucleocapsids within a viral envelope embedded in polyhedron. The polyhedrin of MabrNPV-K1 was composed of single polypeptide with a M.W. of approximate 31 kDa which is identical to the commercialized MabrNPV, Mamestrin, as a biological control agent. The nucleotide and amino acid sequences within the coding region of MabrNPV-K1 polyhedrin shared 99.0% similarity with the polyhedrin gene from previous reported MabrNPVs. The median lethal concentrations ($LC_{50}$) of MabrNPV-K1 and Mamestrin to M. brassicae larvae were $3.9{\times}10^3$ PIBs/larva and $6.0{\times}10^4$ PIBs/larva, respectively. Mortality of the MabrNPV-K1 against to the third instars larvae was 15 times higher than that of the Mamestrin. The median lethal times ($LT_{50})$ of MabrNPV-K1 by the concentration of polyhedra were lower ($4.4{\sim}6.1$ days) than those of Mamestrin ($4.1{\sim}8.6$ days). These results suggest that a local strain MabrNPV-K1 has high pathogenicity to M. brassicae and may be useful for the development of biological control agent to control this.

Protective immunity induced by recombinant outer membrane protein H of pasteurella multocida (A:3) of fowl cholera in mice (파스튜렐라(A : 3) 균주의 재조합 외막단백질 H에 의한 가금 콜레라 감염 생쥐의 면역성 검정)

  • Kim, Younghwan;Yang, Joo-Sung;Kwon, Moosik
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.127-133
    • /
    • 2006
  • Pasteurella multocida is a terrible veterinary pathogen that causes widespread infections in husbandry. To induce homologous and/or heterologous immunity against the infections, outer membrane protein Hs (OmpH) in the envelope of different strains of P. multocida are thought to be attractive vaccine candidates. Previously we cloned and characterized a gene for OmpH from pathogenic P. multocida (A : 3) (In Press, Korean J. Microbiol. Biotechnol. 2005, 33, December). The gene is composed of 1,047 nucleotides (nt) coding 348 amino acids (aa) with signal peptide of 20 aa. The truncated ompH, a gene without nt coding for the signal peptide, was generated using pRSET A to name "pRSET A/OmpH-F2". This truncated ompH was well expressed in Escherichia coli BL21 (DE3). Truncated OmpH was purified for induction of immunity against live pathogen of fowl cholera (P. multocida A : 3) in mice. Some $50{\mu}g$ of the purified polypeptide was intraperitoneally injected into mice two times with 10 day interval. Lethal dose ($25{\mu}l$) of live P. multocida A : 3 was determined by directly injecting the pathogen into wild mice (n = 25). To demonstrate the vaccine candidate of the truncated OmpH, the live pathogen ($25{\mu}l$) was challenged with the OmpH-immunized mouse group as well as positive & negative controls (n = 80). The results show that the truncated OmpH can be used for an effective vaccine production to prevent fowl cholera caused by pathogenic P. multocida (A : 3).