Systematic studies are performed for arsenic adsorption on synthesized lepidocrocite. The synthesized lepidocrocite with high surface area of $94.8\;g/m^2$ has shown that the point of zero charge(PZC) is 6.57 determined by potentiometric titration, suggestive of high capacity of arsenic removal. Results show that arsenite[As(III)] uptake by synthesized lepidocrocite is greater than that of arsenate[As(V)] at pH $2{\sim}12$, indicating that the lepidocrocite has high affinity toward arsenite rather than arsenate. Adsorption of arsenate decreases with increasing pH from 2 to 12, whereas arsenite sorption increases until pH 8.0, and then decreases dramatically with increasing pH, suggesting that changes in surface charge of the lepidocrocite as a function of pH playa important role in aresinc uptake by the lepidocrocite. Upon kinetic experiments, our results demonstrate that both arsenite and arsenate sorption on the lepidocrocite increases rapidly for the first 4 h followed by little changes during the duration of the experiment, showing that adsorption plays a key role in aresenic uptake by the lepidocrocite. Our results also show that power function and elovich models are the best fit for the adsorption kinetics of arsenite and aesenate on the lepidocrocite.
The splash zone is the most corrosive area of the marine environment, and the corrosion of steel structures exposed in this area is a serious concern. DH36 steel is one of most commonly used steels for offshore oil platforms in China, and its corrosion behaviour in splash zones was studied in this paper. Polarization curves were obtained from the corroded steel exposed in this area while the morphologies and rusts of the rust steel were characterized using scanning electron microscopy and X-ray diffraction. Double rust layers were formed in the splash zone. The inner layer contained magnetite and fine flaky lepidocrocite, and the outer layer was composed of accumulated flaky lepidocrocite and a small amount of goethite. In the wet period, the iron dissolved and reacted with lepidocrocite, and magnetite appeared, while the magnetite was oxidized to lepidocrocite again during the dry period. Electrochemical reduction and chemical oxidization cycled in intermittent wetting and drying periods, and magnetite and lepidocrocite were involved in the reduction reaction, leading to serious corrosion.
Park, Hyung-Ho;Lee, Hye-Youn;Lee, Jae-Sung;Yu, Jae-Eun
Journal of Conservation Science
/
v.29
no.3
/
pp.287-296
/
2013
Excavated iron objects are preserved in stable condition through processes of conservation treatment because they are found in the form of various corrosion products. However, the conservation treatment leads to re-corrosion over time and accordingly, iron objects can be severely damaged, and therefore fundamental measures need to be prepared to control it. In this study, the types and characteristics of corrosion products were scientifically analyzed according to the re-corrosion of iron artifacts. In addition, the stability of the corrosion products was evaluated by exposing the standard samples under the re-corrosion environment. Re-corrosion proceeded with weeping in reddish brown on the cracks of iron artifacts. Weeping was detected akagan$\acute{e}$ite had a low hydrogen ion concentration and high chloride ion. The selection of standard sample goethite, lepidocrocite, hematite, and magnetite, were evaluated corrosive by weeping. After the samples were immersed in HCl(pH 1), $H_2SO_4$(pH 1), $H_2O$(pH 6) solution, they had been maintained for 180 days in relative humidity of 20%, 50%, 80% to investiage the changes of chemical components. As a result of analysis, the changes of chemical components were not showed in goethite, lepidocrocite, and hematite. But magnetite was changed to lepidocrocite in solution including chloride ion($Cl^-$) and to goethite and lepidocrocite solution including sulfuric acid($SO{_4}^{2-}$). Results of the study, in the case of magnetite known as s stable corrosion compound, it was identified the corrosion of magnetite occurs by corrosive ions, which means weeping generated in the iron artifacts can corrode magnetite as well as base metal.
The corrosion phenomena of the iron artifacts was studied by morphology observation and instrumental analysis(EDS, XRD, Raman) with various corrosion factors in oder to verify to confirm the danger of corrosion factors. Corrosion compounds were collected by depositing pure Fe powder(99%) into a HCl, $HNO_3$, $H_2SO_4$, and $H_2O$ solution which contained the corrosion factors. Stereoscopic-microscope observations were then conducted determine the colors and shapes of the collected corrosion compounds, and SEM-EDS analysis was conducted to confirm the corrosion factors and the growth of these compounds. X-ray diffraction (XRD), Raman analyses were conducted to examine the crystal structure and compositions of the created corrosion compounds. The results of the experiment revealed that corrosion speed was faster in an acidic environment and corrosion of HCl and $H_2SO_4$ was greater than that of $HNO_3$. The corrosion compounds of HCl grew into a needle or chestnut-like shape after being affected by Cl- ion, and XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $H_2SO_4$ was affected by S ion and grew into a slender-needle-like or cylindrical shape, and the XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $HNO_3$ grew into a spherical or plate-like shape after being affected by O ion and the XRD and Raman analyses detected magnetite and lepidocrocite. Although the corrosion compounds of $H_2O$ grew into a spherical or plate-like shape after being affected by O ion, most of them were observed to have had spherical shapes, and the XRD and Raman analyses failed to detect corrosion compounds in them. It was found in the study that corrosion characteristics and compounds are diversely displayed according to the corrosion factor.
The objectives of this study are to investigate the biomineralization of goethite and lepidocrocite formed on the twisted-stalk and the sheathed-filament structure that is suggest microbe origin, and heavy metal in the yellow Fe-hydroxide. On the ratio of Cl and the Cl/Br ratios that are a pollution and non-pollution of groundwaters, it is indicated that the groundwater in this areas were relatively contaminated by human activity. The composition of the yellow Fe-hydroxide consisted mainly of $Fe_2O_3$ and $SiO_2$. The content of $Fe_2O_3$ ranges from 58.57 wt.% to 75.7 3wt.%, and $SiO_2$ content ranges from 5.8 wt.% to 16.17 wt.%. Heavy metal elements such as Zn(max. 6,160 mg/kg), Pb(max. 377 mg/kg), U(max. 503 mg/kg), Cr(max. 203 mg/kg), Cu(max. 77 mg/kg), V(max. 162 mg/kg), Ni(max. 105 mg/kg) were observed to be rich in those yellow Fe-hydroxide. The lath and platy crystals and needle-shaped crystals were clearly observed on the twisted-stalks and sheathed-filaments structure. The goethite, gypsum, and lepidocrocite were identified in the yellow Fe-hydroxide by x-ray powder diffraction.
Synthesis of Iron oxides by air oxidation of $FeSO_4$ solutions in the presence of NaOH, Diethylenetriamine (DETA), Butylamine (BA) and influence of ultrasonic wave were investigated by XRD, SEM and particle size analyzer. As the DETA addition increased to 0.05 mol, $Fe_3O_4$ was formed with goethite($\alpha$- FeOOH) and $Fe_3O_4$ single phase was formed above 0.18mol of DETA. As the BA addition increased, the XRD peak intensity of (020) face of lepidocrocite($\gamma$-FeOOH) was developed until the formation of $Fe_3O_4$ and reduced the size of the iron oxide particles formed. Ultrasonic wave reduced the size of the iron oxide particles but gave little effects on the iron oxide particles synthesized by amine.
In the present work, corrosion rate W and corrosion potential tow were simultaneously measured as a function of relative humidity RH employing the electrochemical wet and dry method as an accelelated atmospheric corrosion method. The W versus (vs.) RH curve is classified into .three regions, namely, the first W plateau region, the second region of the linear relationship between logarithmic W and RH, finally, followed by an abrupt decay region. Based upon the atmospheric corrosion mechanism of mild steel, we introduced another diagram of $\varepsilon_{corr}$ vs. RH which is divided into three regions. In the first region, the corrosion scales are composed of single lepidocrocite-phase $(\gamma-FeOOH)$; in the second region, $\gamma-FeOOH$-phase coexists with magnetite-phase $(Fe_3O_4)$ in the scales and finally the oxide scales change into a single Fe304-phase in the third region. The three distinct regions of both representations share almost each other, which is validated by FT-IR (Fourier transform infra-red) analysis and surface observation. Both representations prove to be convenient and complementary for surveying the spectrum of the atmospheric corrosion of mild steel.
The compounds associated with corrosion, in metallic archaeological samples of carbon steel of insular origin were evaluated to establish their degree of deterioration and structural damage against air pollution. The iron phases present in samples of archaeological artifacts were detected by Raman spectroscopy and confocal Raman microcopy. These samples mainly exhibited ing mainly ${\beta}$-FeO(OH) type goethite oxyhydroxides and small amounts of akaganeite ${\alpha}$-FeO(OH) lepidocrocite ${\gamma}$-FeO(OH) due to dominant chloride in a marine environment and non-stoichiometric oxyhydroxides Fe (II + / III +) as indicators of early corrosion. Some parts showed the presence of magnetic maghemite indicating high corrosion. ${\gamma}$-FeO(OH) is a precursor of phases associated with advanced marine corrosion. By studying its decomposition by Raman spectroscopy, it was synthesized with the following sequence: ${\gamma}-FeO(OH){\rightarrow}{\alpha}-FeO(OH)+{\gamma}-FeO(OH)$, ${\rightarrow}{\gamma}-Fe_2O_3+Fe_3O_4$. Ferric compounds provided evidence for the effect of intensity of laser on them, constituting a very useful input for the characterization of oxidation of iron in this type of artifacts. Thus, destructive analysis techniques should be avoided in addition to the use of small amounts of specimen.
This study investigates the in-situ implementation of bio-regenerated iron mineral catalyst to remove explosive compounds in ground water at a military shooting range in operation. A bio-regenerated iron mineral catalyst was synthesized using lepidocrocite (iron-bearing soil mineral), iron-reducing bacteria Shewanella putrefaciens CN32, and electron mediator (riboflavin) in the culture medium. This catalyst was then injected periodically in the ground to build a redox active zone acting like permeable reactive barrier through injection wells constructed at a live fire military shooting range. Ground water and core soils were sampled periodically for analysis of explosive compounds, mainly RDX and its metabolites, along with toxicity analysis and REDOX potential measurement. Results suggested that a redox active zone was formed in the subsurface in which contaminated ground water flows through. Concentration of RDX as well as toxicity (% inhibition) of ground water decreased in the downstream compared to those in the upstream while concentration of RDX reduction products increased in the downstream.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.