Study on Adsorption Features of Arsenic onto Lepidocrocite

레피도크로사이트(lepidocrocite) 표면의 비소 흡착 특성 규명

  • Lee, Woo-Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Jeong, Hyeon-Su (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Ju-Yong (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 이우춘 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 정현수 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 김주용 (광주과학기술원 환경공학과) ;
  • 김순오 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Published : 2009.04.28

Abstract

Systematic studies are performed for arsenic adsorption on synthesized lepidocrocite. The synthesized lepidocrocite with high surface area of $94.8\;g/m^2$ has shown that the point of zero charge(PZC) is 6.57 determined by potentiometric titration, suggestive of high capacity of arsenic removal. Results show that arsenite[As(III)] uptake by synthesized lepidocrocite is greater than that of arsenate[As(V)] at pH $2{\sim}12$, indicating that the lepidocrocite has high affinity toward arsenite rather than arsenate. Adsorption of arsenate decreases with increasing pH from 2 to 12, whereas arsenite sorption increases until pH 8.0, and then decreases dramatically with increasing pH, suggesting that changes in surface charge of the lepidocrocite as a function of pH playa important role in aresinc uptake by the lepidocrocite. Upon kinetic experiments, our results demonstrate that both arsenite and arsenate sorption on the lepidocrocite increases rapidly for the first 4 h followed by little changes during the duration of the experiment, showing that adsorption plays a key role in aresenic uptake by the lepidocrocite. Our results also show that power function and elovich models are the best fit for the adsorption kinetics of arsenite and aesenate on the lepidocrocite.

합성된 레피도크로사이트(lepidocrocite)에 대한 비소의 흡착특성을 규명하기 위하여 체계적인 연구를 수행하였다. 본 연구에서 합성된 레피도크로사이트는 $94.8\;g/m^2$의 큰 비표면적을 가졌으며, 전위차 적정법(potentiometric titration)에 의해 측정된 영전하점(point of zero charge, PZC)은 6.57로 나타났는데, 레피도크로사이트의 비소에 대한 높은 제거능은 이러한 특성들에 기인한 것으로 판단된다. pH $2.0{\sim}12$ 범위에서 3가(아비산염 형태) 비소가 5가(비산염 형태) 비소보다 합성된 레피도크로사이트에 대한 흡착력이 크게 나타나서 3가 비소가 5가 비소보다 레피도크로사이트에 대한 친화력이 더 크다는 것을 알 수 있었다. 5가 비소의 흡착은 pH가 2.0에서 12까지 증가하면서 지속적으로 감소한 반면, 3가 비소는 pH가 8.0까지 증가할 때까지는 흡착도 증가하다가 그 이후의 높은 pH조건에서는 흡착이 급격히 감소하는 것으로 조사되었다. 이는 pH에 따라서 레피도크로사이트의 표면전하 특성과 두 비소 종의 존재형태가 변화하기 때문인 것으로 판단된다. 흡착 반응속도에 대한 실험 결과에 의하면, 두 비소 종 모두 4시간 이내에 빠르게 흡착이 완료되는 것으로 나타났는데, 이러한 결과는 레피도크로사이트에 의한 비소의 제거는 주로 흡착반응 이라는 것을 입증한다. 이와 더불어 본 연구결과는 power function과 elovich 모델이 레피도크로사이트에 대한 두 비소 화학종의 흡착반응속도를 모사하는데 가장 적합한 것으로 조사되었다.

Keywords

References

  1. Ahn, J.S., Ko, K.S., Lee, J.S., and Kim, J.Y. (2005) Characteristics of natural arsenic contamination in groundwater and its occurrences. Econ. Environ. Geol., v. 38, p. 547-561
  2. Carrasco, N., Kretzchmar, R., Pesch, M.-L. and Kraemer, S. M. (2007) Low concentrations of surfactants enhanced siderophore-promoted dissolution of goethite. Environ. Sci. Technol., v. 37, p. 3633-3638
  3. Cho. H.G., Kim, E.Y. and Jeong, G.Y. (2001) Surface chemical properties of the Youngdong illite ore: The pH of zero proton charge and surface site density. J. Miner. Soc. Korea, v. 14, p. 12-20
  4. Bai, B., Hankins, N. P., Hey, M. J. and Kingman, S. W. (2004) In situ mechanistic study of SDS adsorption on hematite for optimized froth flotation. Industrial Engineering and Chemistry Research, v. 43, p. 5326-5338 https://doi.org/10.1021/ie034307t
  5. Bang, S. and Meng, X. (2004) Review of arsenic interactionswith anions and iron hydroxides, Environ. Eng. Res., v. 9, p. 184-192 https://doi.org/10.4491/eer.2004.9.4.184
  6. Bang, S. and Meng, X. (2004) Review of arsenic interactionswith anions and iron hydroxides, Environ. Eng. Res., v. 9, p. 184-192 https://doi.org/10.4491/eer.2004.9.4.184
  7. Dixit, S. and Hering, J.G. (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility, Environ. Sci. Technol., v. 37, p. 4182-4189 https://doi.org/10.1021/es030309t
  8. Du, Q., Sun, Z., Forsling, W. and Tang, H. (1997) Acidbase properties of aqueous illite surfaces. J. of Colloid Interf. Sci., v. 187, p. 221-231 https://doi.org/10.1006/jcis.1996.4631
  9. Farrel, J., Wang, J., O'Day, P. and Conklin, M. (2001) Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media, Environ. Sci. Technol., v. 35, p. 2026-2032 https://doi.org/10.1021/es0016710
  10. Fendorf, S.E., LaForce, M.J., Li, G.C. and Patterson, R.R. (1997) Pulsed-flow kinetic analysis of solid-phase transformations in mineral suspensions using XANES spectroscopy: Oxidation of FeS to γ-FeOOH. Abstract of american Chemical Society, v. 214, 34-GEOC
  11. Gim$\acute{e}$nez, J., Martínez, M., de Pablo, j., Rovira, M. and Duro, L. (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater., v. 141, p. 575-580 https://doi.org/10.1016/j.jhazmat.2006.07.020
  12. Herbert, R.B. (1995) Precipitation of Fe oxyhydroxides and jarosite from acidic groundwater. GFF, v. 117, p. 81-85
  13. He, Y.T. and Traina, S.J. (2005) Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation. Environ. Sci. Technol., v. 39, p. 4499–4504 https://doi.org/10.1021/es0483692
  14. Inskeep, W.P., McDermott, T.R. and Fendorf, S. (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In Frankenberger, Jr., W.T.(ed.) Environmental Chemistry of Arsenic, Marcel Dekker, New York, p. 183-215
  15. Jain, A., Raven, K.P. and Loeppert, R.H. (1999) Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH- release stoichiometry. Environ. Sci. Technol., v. 33, p. 1179-1184 https://doi.org/10.1021/es980722e
  16. Jonsson, C.M., Persson, P., Sjöberg, S. and Loring, J.S. (2008) Adsorption of glyphosate on goethite (- FeOOH): Surface complexation modeling combining spectrooscopic and adsorption data. Environ. Sci. Technol., v. 42, p. 2464-2469 https://doi.org/10.1021/es070966b
  17. Jung, H.S., Lee, W.C., Cho, H.G. and Kim, S.O. (2008a) Study on adsorption of characteristics of arsenic on magnetite. J. Miner. Soc. Korea. v. 21, p. 425-434
  18. Jung, Y.I., Lee, W.C., Cho, H.G., Yun, S.T. and Kim, S.O. (2008b) Adsorption of arsenic onto two-line ferrihydrite. J. Miner. Soc. Korea. v. 21, p. 227-237
  19. Katsoyiannis, A., Ruettimann, T. and Hug, S.J. (2008) pHdependence of fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water, Environ. Sci. Technol., v. 42, p. 7424-7430 https://doi.org/10.1021/es800649p
  20. Kim, S.O., Jung, Y.I., Cho, H.G., Choi, S.H. and Lee, H.H. (2007) Preliminary X-ray absorption spectroscopic study on surface complexation of arsenic with zerovalent iron and iron (oxyhydr)oxides. Proc. of the Annual Joint Conference of Mineralogical and Petrological Societies of Korea, p. 131-134
  21. La Force, M.J., Hansel, C.M. and Fendorf, S. (2000). Arsenic speciation, seansonal transformations, and co-distribution with iron in a mine waste-influenced Palustrine Emergent Wetland. Environ. Sci. Technol., v. 34, p. 3937-3943 https://doi.org/10.1021/es0010150
  22. Lee, S.E., Neue, H.U., Park, J.K. and Lim, S.H. (1993) Comparison of the ion adsorption method, potentiometric titration, and backitration technique for surface charge measurement in Ultisol, Alfisol, and Inceptisol. Korean J. Soil Sci. Fert., v. 26, p. 160-171
  23. Lowry, G.V. and Johnson, K.M. (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol., v. 38, p. 5208-5216 https://doi.org/10.1021/es049835q
  24. Manning, B.A., Hunt, M.L., Amrhein, C. and Yarmoff, J.A. (2002) Arsenic(III) and arsenic(V) relations with zerovalent iron corrosion products. Environ. Sci. Technol., v. 36, p. 5455-5461 https://doi.org/10.1021/es0206846
  25. Melitas, N., Wang, J., Conklin, M., O'Day, P. and Farrel, J. (2002) Understanding soluble arsenate removal kinetics by zerovalent iron media. Environ. Sci. Technol., v. 36, p. 2074-2081 https://doi.org/10.1021/es011250y
  26. Nielsen, U.G., Paik, Y., Julmis, K., Schoonen, M.A.A., Reeder, R.J. and Grey, C.P. (2005) Investigating sorpton on iron-oxyhydroxide soil minerals by solid -state NMR spectroscopy: A 6Li MAS NMR study of adsorption and absorption on goethite. J. of Physical Chemistry B., v. 109, p. 18310-18315 https://doi.org/10.1021/jp051433x
  27. Nowack, B., Lützenkirchen, J., Behra, P. and Sigg, L. (1996) Modeling the adsorption of metal-EDTA complexes onto oxides. Environ. Sci. Technol., v.30, p.2397-2405 https://doi.org/10.1021/es9508939
  28. Ona-Nguema, G., Morin, G., Juillot, F., Calas, G. and Brown, Jr., G.E. (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ. Sci. Technol., v. 39, p. 939-944
  29. Ona-Nguema, G., Morin, G., Wang, Y., Menguy, N., Juillot, F., Luca, O., Aquilanti, G., Abdelmoula, M, Ruby, C., Bargar, J.R., Guyot, F., Calas, G. and Brown, Jr., G.E. (2009) Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and greenrust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens. Geochimica et Cosmochimica Acta, v. 73, p. 1359-1381 https://doi.org/10.1016/j.gca.2008.12.005
  30. Peacock, C.L. and Sherman, D.M. (2004) Copper(II) sorption onto goethite, hematite and lepidocrocite: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta, v. 68, p. 2623-2637 https://doi.org/10.1016/j.gca.2003.11.030
  31. Randall, S.R., Sherman, D.M. and Ragnarsdottir, K.V. (2001) Sorption of As(V) on green rust($Fe_4^{11}Fe_2^{111}(OH)_12SO_4.3H_2O$) and lepidocrocite($\gamma$-FeOOH): Surface complexes from EXAFS spectroscopy. Geochim. Cosmochim. Acta, v. 65, p. 1015-1023
  32. Raven, K.P., Jain, A. and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., v. 32, p. 344-349 https://doi.org/10.1021/es970421p
  33. Rietra, R. P. J. J., Hiemstra, T. and van Riemsdijk, W. H. (2001) Interaction between calcium and phosphate adsorption on goethite. Environ. Sci. Technol., v. 35, p. 3369-3374 https://doi.org/10.1021/es000210b
  34. Schwertmann, U. and Cornell, R.M. (2000) Iron oxides in the laboratory. Wiley-VCH Verlag GmbH, Germany, 188p
  35. Sparks, D. L. (1999) Soil physical chemistry(2ed.). CRC Press, Boca Raton, Florida, USA, 405p
  36. Sposito, G. (1984) The surface chemistry of soils. Oxford Univesity Press, New York, USA, 234p
  37. Su, C. and Puls, R. (2001) Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol., v.35, p.1487-1492 https://doi.org/10.1021/es001607i
  38. USEPA. (2006) Integrated Risk Information System, CASRN 7440-38-2