DOI QR코드

DOI QR Code

Detection of Iron Phases Presents in Archaeological Artifacts by Raman Spectroscopy

  • Barbosa, A.L. (University of Cartagena, Science Faculty, Chemistry Department, Laboratory of Catalysis research and New materials, LICATUC, Pharmacy Building, Campus de Zaragocilla) ;
  • Jimenez, C. (University of Cartagena, Science Faculty, Chemistry Department, Laboratory of Catalysis research and New materials, LICATUC, Pharmacy Building, Campus de Zaragocilla) ;
  • Mosquera, J.A. (University of Cartagena, Science Faculty, Chemistry Department, Laboratory of Catalysis research and New materials, LICATUC, Pharmacy Building, Campus de Zaragocilla)
  • Received : 2017.09.08
  • Accepted : 2018.04.18
  • Published : 2018.04.30

Abstract

The compounds associated with corrosion, in metallic archaeological samples of carbon steel of insular origin were evaluated to establish their degree of deterioration and structural damage against air pollution. The iron phases present in samples of archaeological artifacts were detected by Raman spectroscopy and confocal Raman microcopy. These samples mainly exhibited ing mainly ${\beta}$-FeO(OH) type goethite oxyhydroxides and small amounts of akaganeite ${\alpha}$-FeO(OH) lepidocrocite ${\gamma}$-FeO(OH) due to dominant chloride in a marine environment and non-stoichiometric oxyhydroxides Fe (II + / III +) as indicators of early corrosion. Some parts showed the presence of magnetic maghemite indicating high corrosion. ${\gamma}$-FeO(OH) is a precursor of phases associated with advanced marine corrosion. By studying its decomposition by Raman spectroscopy, it was synthesized with the following sequence: ${\gamma}-FeO(OH){\rightarrow}{\alpha}-FeO(OH)+{\gamma}-FeO(OH)$, ${\rightarrow}{\gamma}-Fe_2O_3+Fe_3O_4$. Ferric compounds provided evidence for the effect of intensity of laser on them, constituting a very useful input for the characterization of oxidation of iron in this type of artifacts. Thus, destructive analysis techniques should be avoided in addition to the use of small amounts of specimen.

Keywords

References

  1. H. H. Uhlig. Uhlig's Corrosion Handbook, 2nd ed., pp. 15 - 21, John Wiley & Sons, Londres (2000).
  2. T. Misawa, M. Yamashita, H. Miyuki, and H. Nagano, Corros. Sci., 14, 131 (1974). https://doi.org/10.1016/S0010-938X(74)80051-X
  3. Z. Wang, J. Liu, and R. Han, Corros. Sci., 67, 1 (2013). https://doi.org/10.1016/j.corsci.2012.09.020
  4. T. Ishikawa, K. Yhoshinori, A.Yasukawa, and K. Kazuhiko, Corros. Sci., 40, 1239 (1998). https://doi.org/10.1016/S0010-938X(98)00045-6
  5. U. Schwertmann and R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, pp. 45 - 55, VCH Publishers, Inc. Weinheim, Germany (2003).
  6. H. Naono and K. Nakai, J. Colloid Interf. Sci, 128, 146 (1989). https://doi.org/10.1016/0021-9797(89)90393-7
  7. B. Prelot, F. Villieras., M. Pelletier, G. Gerard, F. Gaboriaud, J. J. Ehrhardt, J. Perrone, M. Fedoroff, J. Jeanjean, G. Lefevre, L. Mazerolles, J. L. Pastol, J. C. Rouchaud, and C. Lindecker, J. Colloid Interf. Sci., 261, 244 (2003). https://doi.org/10.1016/S0021-9797(03)00058-4
  8. U. Schwertmann and R. M. Taylor, Clay. Clay Miner., 20, 159 (1972). https://doi.org/10.1346/CCMN.1972.0200307
  9. A. U. Gehring and A. M. Hofmeister, Clay. Clay Miner., 42, 409 (1994). https://doi.org/10.1346/CCMN.1994.0420405
  10. K. M. Peterson, P. J. Heaney, and J. E. Post, Chem. Geol., 444, 27 (2016). https://doi.org/10.1016/j.chemgeo.2016.09.017
  11. E. Matijevic, Chem. Mater. 5, 412 (1993). https://doi.org/10.1021/cm00028a004
  12. A. Remazeilles and P. Refait Corros. Sci., 49, 844 (2007). https://doi.org/10.1016/j.corsci.2006.06.003
  13. A. L. Barbosa, E. Block, and J. J. Rouquerol, Proc. 12th Congreso Iberoamericano de Catalisis, p. 40, Fisocat, Chile (2010).
  14. J. Gonzalez-Sanchez, D. Arano-Recio, F. Bernes, and H. Mato, Environmental Degradation of Infrastructure and Cultural Heritage in Coastal Tropical Climate, 1st ed., pp. 183-200, Transworld Research Network, India (2009).
  15. D. Neff, Corros. Sci., 47, 515 (2005). https://doi.org/10.1016/j.corsci.2004.05.029
  16. T. Gao, H. Fjellvag, and P. Norby, J. Phys. Chem. B, 112, 9400 (2008). https://doi.org/10.1021/jp801639a
  17. F. Dubois, C. Mendibide, T. Pagnier, F. Perrard, and C. Duretref, Corros. Sci., 50, 3401 (2008). https://doi.org/10.1016/j.corsci.2008.09.027
  18. M. H. Sousa, F. A. Tourinho, J. Depeyrot, G. J O. de Silva, and M. C. Lara, J. Phys. Chem. B, 105, 1168 (2001). https://doi.org/10.1021/jp0039161
  19. R. Altobelli, I. Costa, and D. L Araujo de Faria, Mat. Res., 6, 389 (2003). https://doi.org/10.1590/S1516-14392003000300013
  20. N. Xianghui, L. Xiaogang, D. Cuiwei, H. Yizhong, and D. He, J. Raman Spectrosc., 40, 76 (2009). https://doi.org/10.1002/jrs.2082
  21. M. Veneranda, J. Aramendia, L. Bellot-Gurletb, P. Colomban, K. Castro, and J. M. Madariaga, Corros. Sci., 133, 68 (2018). https://doi.org/10.1016/j.corsci.2018.01.016
  22. Sei J. Oh, D. C. Cook, and H. E. Townsend, Corros. Sci., 4, 1687 (1999).
  23. S, Gao, B. Brown, D. Young, and M. Singer, Corros. Sci., 135, 167 (2018). https://doi.org/10.1016/j.corsci.2018.02.045
  24. V. Klimas, K. Mazeika, V. Jasulaitiene, and A. Jagminas, J. Fluorine Chem., 170, 1 (2015). https://doi.org/10.1016/j.jfluchem.2014.12.002
  25. S. Wijesinghe and T. Zixi, Corros. Sci. Tech., 16, 273 (2017).