• Title/Summary/Keyword: Ferroalloys

Search Result 1, Processing Time 0.014 seconds

Detection of Iron Phases Presents in Archaeological Artifacts by Raman Spectroscopy

  • Barbosa, A.L.;Jimenez, C.;Mosquera, J.A.
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.60-67
    • /
    • 2018
  • The compounds associated with corrosion, in metallic archaeological samples of carbon steel of insular origin were evaluated to establish their degree of deterioration and structural damage against air pollution. The iron phases present in samples of archaeological artifacts were detected by Raman spectroscopy and confocal Raman microcopy. These samples mainly exhibited ing mainly ${\beta}$-FeO(OH) type goethite oxyhydroxides and small amounts of akaganeite ${\alpha}$-FeO(OH) lepidocrocite ${\gamma}$-FeO(OH) due to dominant chloride in a marine environment and non-stoichiometric oxyhydroxides Fe (II + / III +) as indicators of early corrosion. Some parts showed the presence of magnetic maghemite indicating high corrosion. ${\gamma}$-FeO(OH) is a precursor of phases associated with advanced marine corrosion. By studying its decomposition by Raman spectroscopy, it was synthesized with the following sequence: ${\gamma}-FeO(OH){\rightarrow}{\alpha}-FeO(OH)+{\gamma}-FeO(OH)$, ${\rightarrow}{\gamma}-Fe_2O_3+Fe_3O_4$. Ferric compounds provided evidence for the effect of intensity of laser on them, constituting a very useful input for the characterization of oxidation of iron in this type of artifacts. Thus, destructive analysis techniques should be avoided in addition to the use of small amounts of specimen.