• Title/Summary/Keyword: Lens refractive power

Search Result 65, Processing Time 0.02 seconds

Predicting Powers of Spherical Rigid Gas-permeable Lenses Prescription (구면 RGP 렌즈의 처방 굴절력 예측)

  • Yu, Dong-Sik;Yoo, Jong-Sook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.219-225
    • /
    • 2010
  • Purpose: Usefulness in predicting the power of spherical rigid gas-pearmeable (RGP) lenses prescription using dioptric power matrices and arithmetic calculations was evaluated in this study. Noncycloplegic refractive errors and over-refractions were performed on 110 eyes of 55 subjects (36 males and 19 females, aged $24.60{\pm}1.55$years) in twenties objectively with an auto-refractometer (with keratometer) and subjectively. Tear lenses were calculated from keratometric readings and base curves of RGP lenses, and the power of RGP lenses were computed by a dioptric power matrix and an arithmetic calculation from the manifest refraction and the tear lens, and were compared with those by over-refractions in terms of spherical (Sph), spherical quivalent (SE) and astigmatic power. Results: The mean difference (MD) and 95% limits of agreement (LOA=$MD{\pm}1.96SD$) were better for SE (0.26D, $0.26{\pm}0.70D$) than for Sph (0.61D, $0.61{\pm}0.86D$). The mean difference and agreement of the cylindrical power between matrix and arithmetic calculation (-0.13D, $-0.13{\pm}0.53D$) were better than between the others (-0.24D, $0.24{\pm}0.84D$ between matrix and over-refraction; -0.12D, $0.12{\pm}1.00D$ between arithmetic calculation and over-refraction). The fitness of spherical RGP lenses were 54.5% for matrix, 66.4% for arithmetic calculation and 91.8% for over-refraction. Arithmetic calculation was close to the over-refraction. Conclusions: In predicting indications and powers of spherical RGP lens fitting, although there are the differences of axis between total (spectacle) astigmatism and corneal astigmatism, Spherical equivalent using an arithmetic calculation provides a more useful application than using a dioptric power matrix.

A Study on the Relationship between the Disc of Least Confusion and Corrected Vision of Astigmatism (난시안의 최소착락원과 교정시력과의 관계 연구)

  • Kim, Jung-Hee;Kim, In-Suk
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.2
    • /
    • pp.51-57
    • /
    • 2008
  • Purpose: This study has been conducted to know how the size and position of the circle of least confusion has an influence on the vision for minimization of asthenopia when astigmatism is corrected and appropriated prescription to provided clear vision life. Methods: The method of the study has been worked on 68 students (136 eyes) of man and woman enrolled in university of Gyeong-gi-do aged 20 to 40, who have myopic astigmatism in order to know how the corrected vision changes according to the size and position of the circle of least confusion of astigmatism, the vision has been tested by giving the vision whose astigmatic power of 0.25D and 0.50D was just reduced, low correcting the astigmatic power into 0.50D, and at the same time inserting additionally spherical power -0.25D, all under a condition that the corrected vision after completely corrected astigmatism, and the axis of astigmatism was not changed. Results: The average vision was 1.047 when the astigmatic power was fully corrected, and in low correction of 0.25D, it was 0.914, and in low correction of 0.50, it was 0.772. It has been learned that the bigger the circle of least confusion was the bigger the range of vision reduction and the corrected vision in astigmatism has correlation with the size of the circle of least confusion. It has been examined that the average vision according to position of the circle of least confusion in astigmatism was 1.047 when the astigmatic power was completely corrected and focused on the retina with state of point, and in case that the astigmatic power was 0.50D of state of low correction, that is, the circle of least confusion was focused before retina, it was 0.828, and it was also 0.826 when the astigmatic power is low corrected with 0.50D and the circle of least confusion was focused on the retina. Explained briefly, It has been examined that in case that the state of low correction of the astigmatic power was same, the vision reduction was less in the image of the circle of least confusion focused upon the retina than in the image of its being focused before the retina. Conclusions: In case that the refractive power of cylindrical lens is reduced in test of wearability in astigmatism, there needs surely an adjustment of spherical lens that can place the circle of least confusion on the retina.

  • PDF

Multi-Core Fiber Based Fiber Bragg Gratings for Ground Based Instruments

  • Min, Seong-Sik;Lindley, Emma;Leon-Saval, Sergio;Lawrence, Jon;Bland-Hawthorn, Joss
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2015
  • Fiber Bragg gratings (FBGs) are the most compact and reliable method of suppressing atmospheric emission lines in the infrared for ground-based telescopes. It has been proved that real FBGs based filters were able to eliminate 63 bright sky lines with minimal interline losses in 2011 (GNOSIS). Inscribing FBGs on multi-core fibers offers advantages. Compared to arrays of individual SMFs, the multi-core fiber Bragg grating (MCFBG) is greatly reduced in size, resistant to damage, simple to fabricate, and easy to taper into a photonics lantern (PRAXIS). Multi-mode fibers should be used and the number of modes has to be large enough to capture a sufficient amount of light from the telescope. However, the fiber Bragg gratings can only be inscribed in the single-mode fiber. A photonic lantern bi-directionally converts multi-mode to single-mode. The number of cores in MCFBGs corresponds to the mode. For a writing system consisting of a single ultra-violet (UV) laser and phase mask, the standard writing method is insufficient to produce uniform MCFBGs due to the spatial variations of the field at each core within the fiber. Most significant technical challenges are consequences of the side-on illumination of the fiber. Firstly, the fiber cladding acts as a cylindrical lens, narrowing the incident beam as it passes through the air-cladding interface. Consequently, cores receive reduced or zero illumination, while the focusing induces variations in the power at those that are exposed. The second effect is the shadowing of the furthest cores by the cores nearest to the light source. Due to a higher refractive index of cores than the cladding, diffraction occurs at each core-cladding interface as well as cores absorb the light. As a result, any core that is located directly behind another in the beam path is underexposed or exposed to a distorted interference pattern from what phase mask originally generates. Technologies are discussed to overcome the problems and recent experimental results are presented as well as simulation results.

  • PDF

The Error and the Graphical Presentation form of the Binocular Vision Findings (양안시기능 검사 값의 오차와 그래프 양식)

  • Yoon, Seok-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.3
    • /
    • pp.39-48
    • /
    • 2007
  • The stimulus of accommodation A, the stimulus of convergence C and the prism diopter ${\Delta}$ are reviewed and redefined more obviously. How the A and C are managed in the practice are reviewed and summarized. As a result, the common practical process of the binocular vision findings is most suitable in the case of the $l_c=26.67mm$, where the near distance is measured from the test lens to the near target and its value is 40 cm and the average of the P.D equal to 64 mm. The $l_c$ is the distance between the test lens and the center of rotation. Those values were used at calculating the various values in this paper. The error of the stimulus of accommodation values which are evaluated by the practically used formula (5) are calculated. Where the distance between lens and the principle point of eye is 15.07 mm ($=l_H$). The incremental stimulus of convergence values P' caused by the addition prism $P_m$ are evaluated by the recursion computation method. The P' are varied with the $P_m$, the distance $p_c$ between the prism and the center of rotation, the initial convergence value (or inverse target distance) $C_o$ and the refractive index n of the prism material. The recursion computation method and the other formulas are described in detail. In this paper n=1.7 is used. The two factors by which the P' is increased are exist. The one which is major is the property by which the values of convergence whose unit is ${\Delta}$ are not added in the generally way. The other is the that the actual power of the prism is varied with the angle of incidence light. And the P' is decreased remarkably by an increase in the $p_c$ and $C_o$. The $P^{\prime}/P_m$ are calculated and graphed which are varied with the $p_c$ and $C_o$, where the $P_m=20{\Delta}$, P.D=64 mm and n=1.7. The index n dependence of the $P^{\prime}/P_m$ is negligible (refer to fig. 6). The $p_c$ are evaluated at which the P' equal to the $P_m$ for various $P_m$ (refer to table 1). The actual values of the stimulus of convergence and accommodation which are manipulated simply in the practice are calculated. Two graphical forms are suggested. The one is like as the commonly used one. But the stimulus of convergence and of accommodation values in the practice are positioned at the exact positions when the graphic is made (refer to fig. 9). The other is the form that the incremental stimulus of convergence values caused by the addition prisms are represented at actual positions (refer to fig. 11).

  • PDF

Subjective Visuoperception to Vertical Yoked Prisms (수직동향프리즘의 자각적 시감각에 관한 연구)

  • Kim, Jae-Do;Kim, Dae-Hyun;Lee, Ik-Han;Kim, Bong-Whan;Kim, Young-Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.95-99
    • /
    • 2008
  • Purpose: Even refractive error is perfectly corrected by glasses power, the glasses wearer can feel imbalance and uncomfortable by prism effects. The purpose of this study was to investigate subjective imbalance to vertical yoked prism in visually normal subjects. Methods: Visually normal 37 subjects (aged 20 to 31 y) were fully corrected by soft contact lens and worn vertical yoked prism, base up and base down 1, 2, 4, 6, 8 prism diopter(pd) at random order. A rating scale questionnaire was administered to assess quantitatively subjective imbalance to the yoked prism. The near phoria tests were done using Howell-Kim phoria card at 40 cm distance. Results: For the subjective response of imbalance, base up yoked prism was higher than base down yoked prism (t-test: t=4.67, p=0.00) in over 2 prism diopters. The frequency of subjects who feel imbalance by base up vertical yoked prism is higher for near esophoric group than for exophoric group. Conclusions: To reduce subjective imbalance caused by glasses such as dizzy, it needs to make the minimum prism effect, and base down yoked prism is more effective than base up yoked prism in prism effects.

  • PDF