• Title/Summary/Keyword: Lens refractive power

Search Result 65, Processing Time 0.029 seconds

The Change in Refractive Powers of Soft Contact Lenses Caused by the Deposition of Tear Proteins (누액 단백질 침착에 의한 소프트콘택트렌즈의 굴절력 변화)

  • Choi, Jin-Yong;Park, Jae-Sung;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.383-390
    • /
    • 2011
  • Purpose: The present study was conducted to investigate whether refractive powers of soft contact lenses were induced by the deposition of tear proteins when wearing soft contact lenses. Methods: The soft contact lenses (material: etafilcon A, hilafilcon A and comfilcon A) with refractive powers of -1.00 D, -3.00 D, -5.00 D and -7.00 D were incubated in artificial tear for 1 day, 3 days, 5 days, 7 days and 14 days, respectively. After incubation, their refractive powers were measured by wet cell method with an auto-lens meter and their protein deposited on the lenses was determined by the method of Lowry. Results: Among three types of soft contact lenses, the most protein deposition was detected in ionic etafilcon A lens material and significant change of its refractive power was manifested. In other words, refractive powers of etafilcon A lenses firstly decreased after 1 day incubation in artificial tear and then gradually increased with increasing incubation period again. The observed change in refractive powers of all diopters of etafilcon A material was beyond the scope of standard error and bigger in the lens with lower optical power. On the other hand, non-ionic hilafilcon A showed less protein deposition as much as about 20% in etafilacon A and statistically significant increase of refractive powers with increasing incubation period in artificial tear. The change in refractive power of hilafilcon A was also beyond the scope of the standard of error when incubating in artificial tear and greater in the lens with lower diopter. The least protein deposit was shown in silicone hydrogel lens material, comfilcon A as approximately 10% of it in etafilcon A, indicating less change in refractive power within the standard range of error. Conclusions: The large change of refractive powers that was beyond the scope of standard error by the deposition of tear proteins on soft contact lenses was differently detected depending on lens materials in the current study. Thus, the deposition of tear proteins induced by longer period of lens wearing may be one of the causes that induces blurred vision, suggesting that soft contact lens wearers with the amount of tear proteins may need to choose proper lens material.

Refractive Power Changes after Removal of Contact Lenses (콘택트렌즈를 임시 제거한 상태에서의 착용 조건에 따른 굴절력 변화)

  • Cho, Yun-Kyung;Kim, Soo-Woon;Yu, Dong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.279-289
    • /
    • 2013
  • Purpose: To evaluate the changes of refractive power when worn soft contact lenses were temporarily removed. Methods: 91 soft contact lens wearers (15 males and 76 females; total 182 eyes) from 17 to 39 years of age (average: $24{\pm}4.8$ years) were participated. Objective and subjective refraction, and corneal radius were measured at 0, 30, 60 and 90 min after lens removal. The changes in refractive power were evaluated between measurements over time. The other parameters such as types of lenses, fitting and wearing conditions were also assessed. Results: Objective refraction, subjective refraction and corneal radius were significantly changed according to measured time (p<0.0001). A moderate myopic shifts was observed at the beginning (30 min after lens removal) and a slight myopic shift at the late of measurement (60 min to 90 min after lens removal). There are no significant differences between lens types, fitting states, wearing time, wearing days and sleeping time in the previous day. However, there was significant interaction in changes for corneal radius between measuring time and lens type (p=0.017), fitting state (p=0.019), and sleeping time prior to the test (p=0.010). Conclusions: Time to reach refractive and corneal radius stability after contact lens removal revealed at least more than 60 min, regardless of types of lenses, fitting and wearing conditions. Therefore, refraction for correction should be performed after waiting for more than that time as possible.

A method to extract the aspherical surface equation from the unknown ophthalmic lens (형상 분석에 의한 안경렌즈의 비구면 계수 추출 방법)

  • 이호철;이남영;김건희;송창규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.430-433
    • /
    • 2004
  • The ophthalmic lens manufacturing processes need to extract the aspherical surface equation from the unknown surface since its real profile can be adjusted by the process variables to make the ideal curve without the optical aberration. This paper presents a procedure to get the aspherical surface equation of an aspherical ophthalmic lens. Aspherical form generally consists of the Schulz formula to describe its profile. Therefore, the base curvature, conic constant, and high-order polynomial coefficient should be set to the original design equation. To find an estimated aspherical profile, firstly lens profile is measured by a contact profiler, which has a sub-micrometer measurement resolution. A mathematical tool is based on the minimization of the error function to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the refractive power measurement is compared with the curvature distribution on the estimated aspherical surface equation

  • PDF

The Research on the Optical Reliability of Spectacle Lens in Korea (국내 안경렌즈 광학적 요소 신뢰성 조사)

  • Kim, Tae-Hun;Ye, Ki-Hun;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • Purpose: This study is to evaluate reliability of geometrical optics properties of spectacle lenses by using ISO and the medical instrument standard of KFDA, which are being sold in Korea. Methods: We used samples of three hundred and ninety eight spectacle lenses of eight company in total. Refractive indices of each samples which were used in experiment were classified into three groups of medium index (1.55~1.56), high index (1.60~1.61) and extra high index (1.67). Results: Conformity of refractive power was 81.61% in total spectacle lenses. The results showed that thickness conformity 90%, appearance conformity 85.18%, size conformity 96.23% and optical center point conformity 99.50% in total. Conclusions: We found that they deviated from the permitting value in many spectacle lenses on refractive power. The results of errors on prism power, surface inspection and optical center point showed small values in total products. In experiment of lens size and thickness, the bulk of indication rates and conformities of samples deviated from the permitting errors.

  • PDF

Comparison of Intraocular Lens Power Calculation Methods Following Myopic Laser Refractive Surgery: New Options Using a Rotating Scheimpflug Camera

  • Cho, Kyuyeon;Lim, Dong Hui;Yang, Chan-min;Chung, Eui-Sang;Chung, Tae-Young
    • Korean Journal of Ophthalmology
    • /
    • v.32 no.6
    • /
    • pp.497-505
    • /
    • 2018
  • Purpose: To evaluate and compare published methods of calculating intraocular lens (IOL) power following myopic laser refractive surgery. Methods: We performed a retrospective review of the medical records of 69 patients (69 eyes) who had undergone myopic laser refractive surgery previously and subsequently underwent cataract surgery at Samsung Medical Center in Seoul, South Korea from January 2010 to June 2016. None of the patients had pre-refractive surgery biometric data available. The Haigis-L, Shammas, Barrett True-K (no history), Wang-Koch-Maloney, Scheimpflug total corneal refractive power (TCRP) 3 and 4 mm (SRK-T and Haigis), Scheimpflug true net power, and Scheimpflug true refractive power (TRP) 3 mm, 4 mm, and 5 mm (SRK-T and Haigis) methods were employed. IOL power required for target refraction was back-calculated using stable post-cataract surgery manifest refraction, and implanted IOL power and formula accuracy were subsequently compared among calculation methods. Results: Haigis-L, Shammas, Barrett True-K (no history), Wang-Koch-Maloney, Scheimpflug TCRP 4 mm (Haigis), Scheimpflug true net power 4 mm (Haigis), and Scheimpflug TRP 4 mm (Haigis) formulae showed high predictability, with mean arithmetic prediction errors and standard deviations of $-0.25{\pm}0.59$, $-0.05{\pm}1.19$, $0.00{\pm}0.88$, $-0.26{\pm}1.17$, $0.00{\pm}1.09$, $-0.71{\pm}1.20$, and $0.03{\pm}1.25$ diopters, respectively. Conclusions: Visual outcomes within 1.0 diopter of target refraction were achieved in 85% of eyes using the calculation methods listed above. Haigis-L, Barrett True-K (no history), and Scheimpflug TCRP 4 mm (Haigis) and TRP 4 mm (Haigis) methods showed comparably low prediction errors, despite the absence of historical patient information.

The Developmental Process of Blur Circle along to the Variation of a Refractive Power for Hyperopia (원시에서 교정굴절력변화에 따른 착란원 크기)

  • Choi, Woon Sang;Jung, Soo-Ja
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.155-157
    • /
    • 2000
  • A variable process of blur circle is calculated for a artificial hyperopia. The calculation is used to the value of Gullstrand's theoretical eye and a method of geometrical optics. The theoretical eye simplified a entrance pupil and the retina. Ophthalmic lens and eye changed a equivalent lens. Refractive power of a equivalent lens is converted to focal length within theoretical eye, and this is calculated about relation of a blur circle on the retina and ophthalmic lens.

  • PDF

Diameter of the retinal blur circle in a artificial hypermetropia (인워적 원시에 따른 망막에서 착란원 크기)

  • Choi, Woon Sang;Kim, Yoon-Kyung;Oh, Heung Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.2
    • /
    • pp.145-149
    • /
    • 2005
  • In a artificial hypermetropia with the accommodative response, we investigated a diameter of blur circle as a function of test lens refractive power. In a schematic eye model of the hypermetropia, the second focal length along to accommodated power of the crystal lens are calculated as a function of test lens power and, also distance between the retina and exit pupil are calculated as a function of accommodated power. As these results are compared, the size of blur circle on the retina are obtained.

  • PDF

Optical system design for compact digital still camera using diffractive optical elements (회절광학소자를 이용한 컴팩트 디지털 스틸 카메라용 광학계 설계)

  • 박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.239-245
    • /
    • 2000
  • In this paper, the fundamental properties of diffractive optical element were investigated. Also, this work deals with theoretical approaches for achromatization in DOE's optical system based on thin lens theory. It is found that achromatization could be satisfied by one hybrid lens only, which is composed of a diffractive and a refractive element. In order to have compact optical system, we used the tele-photo type lens composed of a positive and a negative power elements instead of retro-focus lens. From the Gaussian brackets and Seidel aberration theory, the initial design was numerically obtained. The aberration properties of an initial design was aplanat and flat field. In order to correct the chromatic aberrations, refractive and diffractive elements were used on front element. This hybrid lens is also useful for correction of higher order aberrations. Compared to conventional design composed of refractive lenses only, this approach dramatically improved the compactness of the optical system. Finally, residual aberration balancing results in a lens with focal length of 3.89 mm and overall length of 5.19 mm, which has enough performance over an f-number of 4.0. Also, it is expected to fulfill all the requirements of a digital still camera lens. This optical system is superior to the current refractive lens system in the number of elements, weight, and aberration properties. rties.

  • PDF

A Comparative Study on Prescription Lenses Standards (주문형 렌즈의 규격 비교 연구)

  • Moon, Byeong-Yeon;Paik, Sun-Mok;Yu, Dong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • Purpose: To evaluate and analyze the quality of Korean prescription lenses according to international standards. Methods: We measured the refractive power, the thickness at optical center and the transmittance, and then made a comparative analysis them with foreign brand products according to international standards. Results: Most of Korean products had good qualities on the refractive power and transmittance, even if there was out of tolerance in a case of korean products. Conclusions: To ensure a higher preference of Korean products in the home and abroad marketplace, a high-powered quality control and marketing strategy are necessary to domestic lens manufacturers.

  • PDF

Study of Masking Effect of Soft Contact Lenses on Cornea after Refractive Surgery (각막굴절교정 수술 안에 대한 소프트콘택트렌즈 착용 시 Masking 효과)

  • Moon, Ye-Rim;Park, Hyung-Min;Chu, Byoung-Sun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.2
    • /
    • pp.91-98
    • /
    • 2016
  • Purpose: This study investigated the masking effect of the hydrogel lens and silicone hydrogel lens on the cornea with refractive surgery and without surgery. Methods: 24 university students (means age: $23.48{\pm}2.89years$) without refractive surgery (12, control group) and with refractive surgery (LASIK: 8, LASEK: 4, experimental group) participated in the study. Mean refractive errors of right eyes were -2.73 D for control group and -0.24 D for experimental group. The differences in the refractive power and corneal topography map between pre- and post-wearing the -3.00 D lenses were compared, and 2 kinds of hydrogel contact lenses (0.89 Mpa, 0.49 Mpa) and 2 kinds of silicone hydrogel lenses (1.5 Mpa, 0.8 Mpa) were used for -3.00 D lenses. NVision-K5001 (Shin nippon, Japan) was used to measure the refractive power and Keratograph 5M (Oculus, Germany) to measure the corneal topography map change. Results: Variations in the refractive power increased to the plus direction in the experimental group after wearing soft contact lenses. The corneal topography map showed significant changes on the both groups after wearing soft contact lenses (p<0.05). However there were no significant differences in the refractive power and corneal topography map variations by lens materials. Conclusions: Wearing soft contact lenses showed corneal topography map changes. Especially wearing soft contact lenses on the flat cornea after corneal refractive surgery showed greater corneal power changes. Therefore, it should pay attention to refractive change in case of prescribing soft contact lenses to patients with corneal refractive surgery.