• Title/Summary/Keyword: Legendre spectral method

Search Result 15, Processing Time 0.024 seconds

Trajectory Optimization for a Supersonic Air-Breathing Missile System Using Pseudo-Spectral Method

  • Park, Jung-Woo;Tahk, Min-Jea;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.112-121
    • /
    • 2009
  • This paper deals with supersonic air-breathing missile system. A supersonic air-breathing missile system has very complicated and incoherent thrust characteristics with respect to outer and inner environment during operation. For this reason, the missile system has many maneuver constraints and is allowed to operate within narrow flight envelope. In this paper, trajectory optimization of the missile is accomplished. The trajectory optimization problem is formulated as a discrete parameter optimization problem. For this formulation, Legendre Pseudo-Spectral method is introduced. This method is based on calculating the state and control variables on Legendre-Gauss-Lobatto (LGL) points. This approach helps to find approximated derivative and integration quantities simply. It is shown that, for this trajectory optimization, trend analysis is performed from thrust characteristics on various conditions so that the trajectory optimization is accomplished with fine initial guess with these results.

OPTIMIZATION FOR THE BUBBLE STABILIZED LEGENDRE GALERKIN METHODS BY STEEPEST DESCENT METHOD

  • Kim, Seung Soo;Lee, Yong Hun;Oh, Eun Jung
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.755-766
    • /
    • 2014
  • In the discrete formulation of the bubble stabilized Legendre Galerkin methods, the system of equations includes the artificial viscosity term as the parameter. We investigate the estimation of this parameter to get the optimal solution which minimizes the maximum error. Some numerical results are reported.

SPECTRAL LEGENDRE AND CHEBYSHEV APPROXIMATION FOR THE STOKES INTERFACE PROBLEMS

  • HESSARI, PEYMAN;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.109-124
    • /
    • 2017
  • The numerical solution of the Stokes equation with discontinuous viscosity and singular force term is challenging, due to the discontinuity of pressure, non-smoothness of velocity, and coupled discontinuities along interface.In this paper, we give an efficient algorithm to solve this problem by employing spectral Legendre and Chebyshev approximations.First, we present the algorithm for a problem defined in rectangular domain with straight line interface. Then it is generalized to a domain with smooth curve boundary and interface by employing spectral element method. Numerical experiments demonstrate the accuracy and efficiency of our algorithm and its spectral convergence.

Legendre Tau Method for the 2-D Stokes Problem

  • Jun, SeRan;Kang, Sungkwon;Kwon, YongHoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.111-133
    • /
    • 2000
  • A Legendre spectral tau approximation scheme for solving the two-dimensional stationary incompressible Stokes equations is considered. Based on the vorticity-stream function formulation and variational forms, boundary value and normal derivative of vorticity are computed. A factorization technique for matrix stems based on the Schur decomposition is derived. Several numerical experiments are performed.

  • PDF

Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening

  • Ghannadpour, S. Amir M.;Kiani, Payam
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.557-568
    • /
    • 2018
  • An investigation is made in the present work on the post-buckling and geometrically nonlinear behaviors of moderately thick perfect and imperfect rectangular plates made-up of functionally graded materials. Spectral collocation approach based on Legendre basis functions is developed to analyze the functionally graded plates while they are subjected to end-shortening strain. The material properties in this study are varied through the thickness according to the simple power law distribution. The fundamental equations for moderately thick rectangular plates are derived using first order shear deformation plate theory and taking into account both geometric nonlinearity and initial geometric imperfections. In the current study, the domain of interest is discretized with Legendre-Gauss-Lobatto nodes. The equilibrium equations will be obtained by discretizing the Von-Karman's equilibrium equations and also boundary conditions with finite Legendre basis functions that are substituted into the displacement fields. Due to effect of geometric nonlinearity, the final set of equilibrium equations is nonlinear and therefore the quadratic extrapolation technique is used to solve them. Since the number of equations in this approach will always be more than the number of unknown coefficients, the least squares technique will be used. Finally, the effects of boundary conditions, initial geometric imperfection and material properties are investigated and discussed to demonstrate the validity and capability of proposed method.

A Comparative Study of Transcription Techniques for Nonlinear Optimal Control Problems Using a Pseudo-Spectral Method

  • Kim, Chang-Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.264-277
    • /
    • 2015
  • This article investigates various transcription techniques for the Legendre pseudospectral (PS) method to compare the pros and cons of each approach. Eight combinations from four different types of collocation points and two discretization methods for dynamic constraints, which differentiate Legendre PS transcription techniques, are implemented to solve a carefully selected test set of nonlinear optimal control problems (NOCPs). The convergence property and prediction accuracy are compared to provide a useful guideline for selecting the best combination. The tested NOCPs consist of the minimum time, minimum energy, and problems with state and control constraints. Therefore, the results drawn from this comparative study apply to the solution of similar types of NOCPs and can mitigate much debate about the best combinations. Additionally, important findings from this study can be used to improve the numerical efficiency of the Legendre PS methods. Three PS applications to the aerospace engineering problems are demonstrated to prove this point.

Resonance Characteristics and Radiation Characteristics of a Spherical Patch on a Dielectric Sphere (구형 유전체 위에 있는 구형 패치의 공진 특성과 방사 특성)

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Lee, Myung-Gun;Chun, Hueng-Jae;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • In this paper, the resonance characteristics and radiation characteristics of a spherical patch on a dielectric sphere are analyzed. Resonance characteristics can be obtained from the resonant frequency and the quality factor. Radiation characteristics can be also analyzed from the E-field in the far region. In order to calculate these parameters, spectral domain analysis method is applied. Algebraic equation can be obtained in spectral domain through Vector Legendre transform pair and Galerkin's method. So, efficient calculation is possible numerically. It is investigated that radius, curvature of a spherical patch, and dielectric constant of a dielectric sphere have an effect on characteristics of a spherical patch.

LEAST-SQUARES METHOD FOR THE BUBBLE STABILIZATION BY THE GAUSS-NEWTON METHOD

  • Kim, Seung Soo;Lee, Yong Hun;Oh, Eun Jung
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • In the discrete formulation of the bubble stabilized Legendre Galerkin methods, the system of equations includes the artificial viscosity term as the parameter. We investigate the estimation of this parameter to get the least-squares solution which minimizes the sum of the squares of errors at each node points. Some numerical results are reported.

PRECONDITIONED SPECTRAL COLLOCATION METHOD ON CURVED ELEMENT DOMAINS USING THE GORDON-HALL TRANSFORMATION

  • Kim, Sang Dong;Hessari, Peyman;Shin, Byeong-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.595-612
    • /
    • 2014
  • The spectral collocation method for a second order elliptic boundary value problem on a domain ${\Omega}$ with curved boundaries is studied using the Gordon and Hall transformation which enables us to have a transformed elliptic problem and a square domain S = [0, h] ${\times}$ [0, h], h > 0. The preconditioned system of the spectral collocation approximation based on Legendre-Gauss-Lobatto points by the matrix based on piecewise bilinear finite element discretizations is shown to have the high order accuracy of convergence and the efficiency of the finite element preconditioner.

Application of ADE-PML Boundary Condition to SEM using Variational Formulation of Velocity-Stress 3D Wave Equation (속도-응력 변분식을 이용한 3차원 SEM 탄성파 수치 모사에 대한 ADE-PML경계조건의 적용)

  • Cho, Chang-Soo;Son, Min-Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2012
  • Various numerical methods in simulation of seismic wave propagation have been developed. Recently an innovative numerical method called as the Spectral Element Method (SEM) has been developed and used in wave propagation in 3-D elastic media. The SEM that easily implements the free surface of topography combines the flexibility of a finite element method with the accuracy of a spectral method. It is generally used a weak formulation of the equation of motion which are solved on a mesh of hexahedral elements based on the Gauss-Lobatto-Legendre integration rule. Variational formulations of velocity-stress motion are newly modified in order to implement ADE-PML (Auxiliary Differential Equation of Perfectly Matched Layer) in wave propagation in 3-D elastic media, because a general weak formulation has a difficulty in adapting CFS (Complex Frequency Shifted) PML (Perfectly Matched Layer). SEM of Velocity-Stress motion having ADE-PML that is very efficient in absorbing waves reflected from finite boundary is verified with simulation of 1-D and 3-D wave propagation.