DOI QR코드

DOI QR Code

SPECTRAL LEGENDRE AND CHEBYSHEV APPROXIMATION FOR THE STOKES INTERFACE PROBLEMS

  • HESSARI, PEYMAN (DEPARTMENT OF MATHEMATICAL AND STATISTICAL SCIENCES, UNIVERSITY OF ALBERTA) ;
  • SHIN, BYEONG-CHUN (DEPARTMENT OF MATHEMATICS, CHONNAM NATIONAL UNIVERSITY)
  • Received : 2017.06.14
  • Accepted : 2017.08.21
  • Published : 2017.09.25

Abstract

The numerical solution of the Stokes equation with discontinuous viscosity and singular force term is challenging, due to the discontinuity of pressure, non-smoothness of velocity, and coupled discontinuities along interface.In this paper, we give an efficient algorithm to solve this problem by employing spectral Legendre and Chebyshev approximations.First, we present the algorithm for a problem defined in rectangular domain with straight line interface. Then it is generalized to a domain with smooth curve boundary and interface by employing spectral element method. Numerical experiments demonstrate the accuracy and efficiency of our algorithm and its spectral convergence.

References

  1. C. Bernardi and Y. Maday, Approximation Spectrales de Problemes aux Limites Elliptiques, Springer-Verlag, Paris, 1992.
  2. C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.
  3. W.J. Gordon and C.A. Hall, Transfinite element methods: Blending function interpolation over arbitrary curved element domains, Numer. Math., 21 (1973) 109-129. https://doi.org/10.1007/BF01436298
  4. W.J. Gordon and C.A. Hall, Geometric aspects of the finite element method: construction of curvilinear coordinate systems and their application to mesh generation, Int. J. Numer. Meth. Eng., 7 (1973) 461-477. https://doi.org/10.1002/nme.1620070405
  5. P. Hessari, S.D. Kim, and B.-C. Shin, Numerical solution for elliptic interface problems using spectral element collocation method, Abstract and Applied Analysis, 2014 (2014) 780769.
  6. P. Hessari and B.-C. Shin, The least squares pseudo spectral method for Navier-Stokes equations, Comp. Math. Appl., 66 (2013) 318-329. https://doi.org/10.1016/j.camwa.2013.05.009
  7. S.D. Kim, P. Hessari, and B-C. Shin, Preconditioned spectral collocation method on curved element domains using the Gordon-Hall transformation, Bull. Korean Math. Soc., 15 (2014) 595-612.
  8. K. Ito and Z. Li, Interface conditions for Stokes equations with a discontinuous viscosity and surface sources, Appl. Math. Lett., 19 (2006) 229-234. https://doi.org/10.1016/j.aml.2005.02.041
  9. Z. Li, K. Ito, and M-C. Lai, An augmented approach for the Stokes equations with a discontinuous viscosity and singular forces, Comput. fluid, 36 (2007) 622-635. https://doi.org/10.1016/j.compfluid.2006.03.003
  10. S.D. Kim, H.-C. Lee, and B.C. Shin, Pseudo-spectral least-squares method for the second-order elliptic boundary value problem, SIAM J. Numer. Anal., 41 (2003) 1370-1387. https://doi.org/10.1137/S0036142901398234
  11. R.J. LeVeque and Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, (1994) 1019-1044. https://doi.org/10.1137/0731054
  12. R.J. Leveque and Z. Li, Immersed interface method for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18 (1997) 709-735. https://doi.org/10.1137/S1064827595282532
  13. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, 1994.
  14. C.S. Peskin, Numerical analysis of blood flow in the heart, J Comput. Phys, 25 (1997) 220-252.
  15. B.C. Shin, Pseudo-spectral least-squares method for elliptic interface problems, J. Korean Math. Soc., 50 (2013) 1291-1310. https://doi.org/10.4134/JKMS.2013.50.6.1291
  16. B.C. Shin and J.H. Jung, Spectral collocation and radial basis function methods for one-dimensional interface problems, Appl. Numer. Math., 61 (2011) 911-928. https://doi.org/10.1016/j.apnum.2011.03.005
  17. R. Teman, Navier-Stokes equation. New York: North-Holland; 1977.
  18. V. Rutka, A staggered grid based explicit jump immersed interface method for two-dimensional Stokes flows, Int J Numer Meth. Fluids, 57 (2008) 1527-1543. https://doi.org/10.1002/fld.1694
  19. H.S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna, A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. Comput. Phys., 174 (2001) 345-380. https://doi.org/10.1006/jcph.2001.6916