The aim of this study is to analyze STEAM lessons focused on the learner's learning. This study was conducted on 4th-graders in Y city, Kyung-gi province. The lessons were based on a joint teaching plan for students through the teacher learning community (TLC) with three teachers from the same school. Each of the three classes that conducted the class was selected and analyzed as the main center of observation by three students. The conclusions from this study are as follows: First, we identified that different levels of learners are learning in STEAM lessons through a learner-centered class analysis. Some students arrived on their own by taking the initiative in class, others by consulting with a group of friends, and others needed active teacher guidance to learn. Second, Depending on the level and characteristics of the students, some learning criteria were not reached. Some students need guidance at a glance level, and others need individually instructed or guided activities. Teachers need to keep an eye out for students and give them an appropriate level of guidance during class. In STEAM lessons, it appears that students of different levels and characteristics can immerse themselves in their own way, as well as the clear guidance of activity for their students.
For the successful implementation of IT projects, individual consultant's competency in the project is very important. Especially, 3 key factors which are 1) Learning-by-Doing, 2) Learning-from-Others, and 3) Learning-by-Investment with individual consultant's competency, are required for solving various critical issues which can be occurred during implementing IT project. The objective of this research is to examine the effects of these learning processes on decision performance of consultants. Prior to setup the research model, we conducted 3 times in-depth interviews with IT consultants who have over 20 years IT project experiences. Through interviews with IT project expert, we tried to validate our research model and develop survey questionnaires. Over 100 consultants, who are working at SI companies those of Samsung SDS, LG CNS, SK C&C and other small SI companies, were participated to survey. In the contrary of our thoughts before conducted experiment, we got the interesting result from pilot experiment. Most influenced learning process was Learning-by-Doing and less influenced learning process was Learning-from-Others.
Objective: The aim of this study is to explore the variation in perceptions about problem-based learning(PBL) according to the level of academic achievement and learning attitude in the nursing students of a junior college (3-year program). Method: Students (n=39) learned the respiratory and cardiac system with seven PBL packages and group-based learning for a semester in 2002. Students were asked to write reflective journals that focused on their learning perception after an experience with each learning package. A total of 208 journals were used for analysis. Result: Students positively perceived that PBL making them increase their sense of responsibility for learning and felt satisfaction with the learning process, and had a confidence in the use of clinical nursing interventions. On the other hand, they negatively perceived that PBL was a burden because it took more time than traditional learning tasks, and they experienced an anxiety about regular tests and felt conflicts and diffidences in the learning process. The negative perceptions were expressed more often from students with a low academic achievement and low learning attitude compared to others. Conclusion: Students perceived the PBL as effective in understanding the learning concepts in the clinical practice environment. PBL need to be supplemented by feedback-based lecture and facilitative strategies for academically low-achieved students.Objective: The aim of this study is to explore the variation in perceptions about problem-based learning(PBL) according to the level of academic achievement and learning attitude in the nursing students of a junior college (3-year program). Method: Students (n=39) learned the respiratory and cardiac system with seven PBL packages and group-based learning for a semester in 2002. Students were asked to write reflective journals that focused on their learning perception after an experience with each learning package. A total of 208 journals were used for analysis. Result: Students positively perceived that PBL making them increase their sense of responsibility for learning and felt satisfaction with the learning process, and had a confidence in the use of clinical nursing interventions. On the other hand, they negatively perceived that PBL was a burden because it took more time than traditional learning tasks, and they experienced an anxiety about regular tests and felt conflicts and diffidences in the learning process. The negative perceptions were expressed more often from students with a low academic achievement and low learning attitude compared to others. Conclusion: Students perceived the PBL as effective in understanding the learning concepts in the clinical practice environment. PBL need to be supplemented by feedback-based lecture and facilitative strategies for academically low-achieved students.
Huong, Truong Thu;Bac, Ta Phuong;Thang, Bui Doan;Long, Dao Minh;Quang, Le Anh;Dan, Nguyen Minh;Hoang, Nguyen Viet
International Journal of Computer Science & Network Security
/
v.21
no.6
/
pp.169-180
/
2021
Since machine learning was invented, there have been many different machine learning-based algorithms, from shallow learning to deep learning models, that provide solutions to the classification tasks. But then it poses a problem in choosing a suitable classification algorithm that can improve the classification/detection efficiency for a certain network context. With that comes whether an algorithm provides good performance, why it works in some problems and not in others. In this paper, we present a data-centric analysis to provide a way for selecting a suitable classification algorithm. This data-centric approach is a new viewpoint in exploring relationships between classification performance and facts and figures of data sets.
Despite its ineffectiveness, the dominant pedagogy for engineering education is still "chalk & talk". Meanwhile, student-centered learning models have been highlighted for strong communication, teamwork skills, deep understanding and analysis on social, environmental and economic issues as well as application of their engineering knowledge in practice. Among others, on problem- and project-based learning, this article examines theoretical background and detailed features and a comparison between both learning models including common and different features from the previous theoretical and empirical studies. It reviews some cases of where they have been practiced successfully in engineering, and further, applied strategies for engineering education are suggested.
Knowledge can be more meaningful when it is shaped and personalized through interaction with others. Implementation of open learning environments such as open courseware or shared knowledge communities has gradually become more common. A case study which investigated instructors' experiences and perceptions of publishing and using open courseware in the classroom was conducted at a university in Korea. Responses from participating students and an evaluation group regarding how they perceived open learning environments were also examined. Based on the inductive analysis of the data, this study discusses advantages and challenges of publishing open courseware and collaborative learning environments. Also, practical guidelines for developing reusable learning materials are suggested.
Journal of the Korean Institute of Telematics and Electronics C
/
v.34C
no.9
/
pp.61-67
/
1997
The HMM-Net is an architecture for a neural network that implements a hidden markov model(HMM). The architecture is developed for the purpose of combining the classification power of neural networks with the time-domain modeling capability of HMMs. Criteria which are used for learning HMM_Net classifiers are maximum likelihood(ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numbers from /young/to/koo/ show that in the binary inputs the performance of MMSE is better than the others, while in the fuzzy inputs the performance of MMI is better than the others.
This paper introduces a new approach to analysis of error convergence for a class of iterative learning control systems. First, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established in the form of T-S fuzzy model. We analysis the error convergence in the sense of induced 2 L -norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative learning controller design problem to guarantee the error convergence can be reduced to linear matrix inequality problems. In comparison with others, our learning algorithm ...
Two supervised learning algorithms, a basic neural network and a long short-term memory recurrent neural network, are applied to traffic including DDoS attacks. The joint effects of preprocessing methods and hyperparameters for machine learning on performance are investigated. Values representing attack characteristics are extracted from datasets and preprocessed by two methods. Binary classification and two optimizers are used. Some hyperparameters are obtained exhaustively for fast and accurate detection, while others are fixed with constants to account for performance and data characteristics. An experiment is performed via TensorFlow on three traffic datasets. Three scenarios are considered to investigate the effects of learning former traffic on sequential traffic analysis and the effects of learning one dataset on application to another dataset, and determine whether the algorithms can be used for recent attack traffic. Experimental results show that the used preprocessing methods, neural network architectures and hyperparameters, and the optimizers are appropriate for DDoS attack detection. The obtained results provide a criterion for the detection accuracy of attacks.
International Journal of Advanced Culture Technology
/
v.7
no.4
/
pp.289-294
/
2019
As social network service platforms grow and one-person media market expands, people upload their own photos and/or videos through multiple open platforms. However, it can be illegal to upload the digital contents containing the faces of others on the public sites without their permission. Therefore, many people are spending much time and effort in editing such digital contents so that the faces of others should not be exposed to the public. In this paper, we propose an automatic face hiding system called 'autoblur', which detects all the unregistered faces and mosaic them automatically. The system has been implemented using the GitHub MIT open-source 'Face Recognition' which is based on deep learning technology. In this system, two dozens of face images of the user are taken from different angles to register his/her own face. Once the face of the user is learned and registered, the system detects all the other faces for the given photo or video and then blurs them out. Our experiments show that it produces quick and correct results for the sample photos.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.