• Title/Summary/Keyword: Learning with AI

Search Result 820, Processing Time 0.029 seconds

A Study on Trend Using Time Series Data (시계열 데이터 활용에 관한 동향 연구)

  • Shin-Hyeong Choi
    • Advanced Industrial SCIence
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2024
  • History, which began with the emergence of mankind, has a means of recording. Today, we can check the past through data. Generated data may only be generated and stored at a certain moment, but it is not only continuously generated over a certain time interval from the past to the present, but also occurs in the future, so making predictions using it is an important task. In order to find out trends in the use of time series data among numerous data, this paper analyzes the concept of time series data, analyzes Recurrent Neural Network and Long-Short Term Memory, which are mainly used for time series data analysis in the machine learning field, and analyzes the use of these models. Through case studies, it was confirmed that it is being used in various fields such as medical diagnosis, stock price analysis, and climate prediction, and is showing high predictive results. Based on this, we will explore ways to utilize it in the future.

Proposal of a Step-by-Step Optimized Campus Power Forecast Model using CNN-LSTM Deep Learning (CNN-LSTM 딥러닝 기반 캠퍼스 전력 예측 모델 최적화 단계 제시)

  • Kim, Yein;Lee, Seeun;Kwon, Youngsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.8-15
    • /
    • 2020
  • A forecasting method using deep learning does not have consistent results due to the differences in the characteristics of the dataset, even though they have the same forecasting models and parameters. For example, the forecasting model X optimized with dataset A would not produce the optimized result with another dataset B. The forecasting model with the characteristics of the dataset needs to be optimized to increase the accuracy of the forecasting model. Therefore, this paper proposes novel optimization steps for outlier removal, dataset classification, and a CNN-LSTM-based hyperparameter tuning process to forecast the daily power usage of a university campus based on the hourly interval. The proposing model produces high forecasting accuracy with a 2% of MAPE with a single power input variable. The proposing model can be used in EMS to suggest improved strategies to users and consequently to improve the power efficiency.

The Detection of Online Manipulated Reviews Using Machine Learning and GPT-3 (기계학습과 GPT3를 시용한 조작된 리뷰의 탐지)

  • Chernyaeva, Olga;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.347-364
    • /
    • 2022
  • Fraudulent companies or sellers strategically manipulate reviews to influence customers' purchase decisions; therefore, the reliability of reviews has become crucial for customer decision-making. Since customers increasingly rely on online reviews to search for more detailed information about products or services before purchasing, many researchers focus on detecting manipulated reviews. However, the main problem in detecting manipulated reviews is the difficulties with obtaining data with manipulated reviews to utilize machine learning techniques with sufficient data. Also, the number of manipulated reviews is insufficient compared with the number of non-manipulated reviews, so the class imbalance problem occurs. The class with fewer examples is under-represented and can hamper a model's accuracy, so machine learning methods suffer from the class imbalance problem and solving the class imbalance problem is important to build an accurate model for detecting manipulated reviews. Thus, we propose an OpenAI-based reviews generation model to solve the manipulated reviews imbalance problem, thereby enhancing the accuracy of manipulated reviews detection. In this research, we applied the novel autoregressive language model - GPT-3 to generate reviews based on manipulated reviews. Moreover, we found that applying GPT-3 model for oversampling manipulated reviews can recover a satisfactory portion of performance losses and shows better performance in classification (logit, decision tree, neural networks) than traditional oversampling models such as random oversampling and SMOTE.

Analysis of the impact of mathematics education research using explainable AI (설명가능한 인공지능을 활용한 수학교육 연구의 영향력 분석)

  • Oh, Se Jun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.435-455
    • /
    • 2023
  • This study primarily focused on the development of an Explainable Artificial Intelligence (XAI) model to discern and analyze papers with significant impact in the field of mathematics education. To achieve this, meta-information from 29 domestic and international mathematics education journals was utilized to construct a comprehensive academic research network in mathematics education. This academic network was built by integrating five sub-networks: 'paper and its citation network', 'paper and author network', 'paper and journal network', 'co-authorship network', and 'author and affiliation network'. The Random Forest machine learning model was employed to evaluate the impact of individual papers within the mathematics education research network. The SHAP, an XAI model, was used to analyze the reasons behind the AI's assessment of impactful papers. Key features identified for determining impactful papers in the field of mathematics education through the XAI included 'paper network PageRank', 'changes in citations per paper', 'total citations', 'changes in the author's h-index', and 'citations per paper of the journal'. It became evident that papers, authors, and journals play significant roles when evaluating individual papers. When analyzing and comparing domestic and international mathematics education research, variations in these discernment patterns were observed. Notably, the significance of 'co-authorship network PageRank' was emphasized in domestic mathematics education research. The XAI model proposed in this study serves as a tool for determining the impact of papers using AI, providing researchers with strategic direction when writing papers. For instance, expanding the paper network, presenting at academic conferences, and activating the author network through co-authorship were identified as major elements enhancing the impact of a paper. Based on these findings, researchers can have a clear understanding of how their work is perceived and evaluated in academia and identify the key factors influencing these evaluations. This study offers a novel approach to evaluating the impact of mathematics education papers using an explainable AI model, traditionally a process that consumed significant time and resources. This approach not only presents a new paradigm that can be applied to evaluations in various academic fields beyond mathematics education but also is expected to substantially enhance the efficiency and effectiveness of research activities.

Concept Analysis of Professional Nurse Autonomy (간호전문직 자율성(Professional Nurse Autonomy)의 개념분석)

  • Chi, Sung-Ai;Yoo, Hyung-Sook
    • Journal of Korean Academy of Nursing
    • /
    • v.31 no.5
    • /
    • pp.781-792
    • /
    • 2001
  • Professional nurse Autonomy is an essential attribute of a discipline striving for full professional status. Purpose: This study was to clarify the concept of professional nurse autonomy to provide basic data needed for development of professional autonomy enhancing strategies. Method: This study use the process of Walker & Avante's concept analysis based on Wade's research (1999), and field data of 21 nurses. Results: Professional nurse autonomy is defined as competency and creative performance of the professional nurse in practice, to decide independently or interdependently nursing activities and to be had accountable for results of decisions, that reflect advocacy and caring. It was identified that critical attributes include responsible discretionary decision making, collegial interdependence, initiative, creativity, and caring, advocacy, cooperative relationship with clients, receptive capacity to others, activeness, self confidence, and devotion and responsibility to their profession. Antecedents include personal characteristics, educational background, experience and structural characteristics that enhance professional nurse autonomy. Consequences of professional nurse autonomy are feelings of self-efficacy, empowerment, job satisfaction, reduction of intention to leave their job. Conclusion: According to these results, it is recommended that the curriculum provides an environment for learning professional nurse autonomy, and that is used as basic data to develope strategies to enhance professional autonomy of nurse in practice and it's effects

  • PDF

Magnetic and kinematic characteristics of very fast CMEs

  • Jang, Soojeong;Moon, Yong-Jae;Lim, Daye;Lee, Jae-Ok;Lee, Harim;Park, Eunsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2018
  • It is important to understand very fast CMEs which are the main cause of geomagnetic storms and solar particle events (SPEs). During this solar cycle 24, there are 10 very fast CMEs whose speeds are over 2000 km/s. Among these, there were only two fronside events (2012 January 23 and 2012 March 7) and they are associated with two major flares (M8.7 and X5.4) and the most strong SPEs (6310 pfu and 6530 pfu). They have a similar characteristics: there were successive CMEs within 2 hours in the same active region. We analyze their magnetic properties using SDO HMI magnetograms and kinematic ones from STEREO EUVI/COR1/COR2 observations. We can measure their speeds and initial accelerations without projection effects because their source locations are almost the limb. Additionally, we are investigating magnetic and kinematic characteristics of 8 backside events using AI-generated magnetograms constructed by deep learning methods.

  • PDF

Successful vs. Failed Tech Start-ups in India: What Are the Distinctive Features?

  • Kalyanasundaram, Ganesaraman;Ramachandrula, Sitaram;Subrahmanya MH, Bala
    • Asian Journal of Innovation and Policy
    • /
    • v.9 no.3
    • /
    • pp.308-338
    • /
    • 2020
  • The entrepreneurial journey is not short of challenges, and about 90% + tech start-ups experience failure (Startup Genome, 2019). The magnitude of the challenges varies across the tech start-up lifecycle stages, namely emergence, stability, and growth. This opens the research question, do the profiles of a start-up and its co-founder impact start-up success or failure across its lifecycle stages? This study aims to understand and identify the profiles of tech start-ups and their co-founders. We gathered primary data from 151 start-ups (Status: 101 failed and 50 successful ones), and they are across different lifecycle stages and represent six major start-up hubs in India. The chi-square test on status and start-up's lifecycle stage indicates a noticeable correlation, and they are not independent. The Kruskal Wallis test was used to distinguish statistically significant profile attributes. The parameters distinguishing success and failure are identified, and the need to deliver customer experience is emphasized by the start-up profile attributes: Product/service, high-tech nature of a start-up, investor fund availed, co-founder experience, and employee count. The importance of entrepreneurial experience is ascertained with entrepreneur profile attributes: Entrepreneurial expertise, the number of prior and current start-ups, their willingness to start again in the event of failure, and age of co-founder, which is a proxy to learning and experience. This study has implications for entrepreneurs, investors, and policymakers.

Framework for Reconstructing 2D Data Imported from Mobile Devices into 3D Models

  • Shin, WooSung;Min, JaeEun;Han, WooRi;Kim, YoungSeop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.6-9
    • /
    • 2021
  • The 3D industry is drawing attention for its applications in various markets, including architecture, media, VR/AR, metaverse, imperial broadcast, and etc.. The current feature of the architecture we are introducing is to make 3D models more easily created and modified than conventional ones. Existing methods for generating 3D models mainly obtain values using specialized equipment such as RGB-D cameras and Lidar cameras, through which 3D models are constructed and used. This requires the purchase of equipment and allows the generated 3D model to be verified by the computer. However, our framework allows users to collect data in an easier and cheaper manner using cell phone cameras instead of specialized equipment, and uses 2D data to proceed with 3D modeling on the server and output it to cell phone application screens. This gives users a more accessible environment. In addition, in the 3D modeling process, object classification is attempted through deep learning without user intervention, and mesh and texture suitable for the object can be applied to obtain a lively 3D model. It also allows users to modify mesh and texture through requests, allowing them to obtain sophisticated 3D models.

A Study on the Real-Time Risk Analysis of Heavy-Snow according to the Characteristics of Traffic and Area (교통과 지역의 특성에 따른 대설의 실시간 피해 위험도 분석 연구)

  • KwangRim, Ha;YongCheol, Jung;JinYoung, Yoo;JunHee, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.77-93
    • /
    • 2022
  • In this study, we present an algorithm that analyzes the risk by reflecting regional characteristics for factors affected by direct and indirect damage from heavy-snow. Factors affected by heavy-snow damage by 29 regions are selected as influencing variables, and the concept of sensitivity is derived through the relationship with the amount of damage. A snow damage risk prediction model was developed using a machine learning (XGBoost) algorithm by setting weather conditions (snow cover, humidity, temperature) and sensitivity as independent variables, and setting the risk derived according to changes in the independent variables as dependent variables.

Application of AI Technology in Requirements Analysis and Architecture Definition - status and prospects (요구사항 분석 및 아키텍처 정의 분야의 인공지능 적용 현황 및 방향)

  • Jin Il, Kim;Choong Sub, Yeum;Joong Uk, Shin
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.50-57
    • /
    • 2022
  • Along with the development of the 4th Industrial Revolution technology, artificial intelligence technology is also being used in the field of systems engineering. This study analyzed the development status of artificial intelligence technology in the areas of systems engineering core processes such as stakeholder needs and requirements definition, system requirement analysis, and system architecture definition, and presented future technology development directions. In the definition of stakeholder needs and requirements, technology development is underway to compensate for the shortcomings of the existing requirement extraction methods. In the field of system requirement analysis, technology for automatically checking errors in individual requirements and technology for analyzing categories of requirements are being developed. In the field of system architecture definition, a technology for automatically generating architectures for each system sector based on requirements is being developed. In this study, these contents were summarized and future development directions were presented.