One of major factors for learning achievement is the student's learning preference according to his character type. In course of learning, if a student studies e-learning contents opposed to his preference, then he would be under stress and his blood pressure and heart beat be changed. For measuring unwillingness, we used spectral components in frequency domain known as stress measure. For 13 children attending kindergarten we examined S(sensing)/ N(intuition) of MBTI and presented same learning contents during 10 minutes. During learning we gathered ECG signals, changed into HRV(heart rate variability), transformed time-varying HRV signal into spectral density in frequency domain. And then, we divided it into three areas of low(LF), middle(MF), and high-frequency(HF) and calculated stress measures by rates of those frequency area. We compared estimated stress measures of S group with them of N group whether students in different group preferred different contents or not. Experimental shows that students according to MBTI type prefer different contents.
International Journal of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.231-243
/
2021
In Recent years the way we analyze the breast cancer has changed dramatically. Breast cancer is the most common and complex disease diagnosed among women. There are several subtypes of breast cancer and many options are there for the treatment. The most important is to educate the patients. As the research continues to expand, the understanding of the disease and its current treatments types, the researchers are constantly being updated with new researching techniques. Breast cancer survival rates have been increased with the use of new advanced treatments, largely due to the factors such as earlier detection, a new personalized approach to treatment and a better understanding of the disease. Many machine learning classification models have been adopted and modified to diagnose the breast cancer disease. In order to enhance the performance of classification model, our research proposes a model using A Hybrid Modified K-Means Clustering with Modified SVM (Support Vector Machine) Machine learning algorithm to create a new method which can highly improve the performance and prediction. The proposed Machine Learning model is to improve the performance of machine learning classifier. The Proposed Model rectifies the irregularity in the dataset and they can create a new high quality dataset with high accuracy performance and prediction. The recognized datasets Wisconsin Diagnostic Breast Cancer (WDBC) Dataset have been used to perform our research. Using the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset, We have created our Model that can help to diagnose the patients and predict the probability of the breast cancer. A few machine learning classifiers will be explored in this research and compared with our Proposed Model "A Hybrid Modified K-Means with Modified SVM Machine Learning Algorithm to Enhance the Cancer Prediction" to implement and evaluated. Our research results show that our Proposed Model has a significant performance compared to other previous research and with high accuracy level of 99% which will enhance the Cancer Prediction.
Journal of the Korea Institute of Information Security & Cryptology
/
v.18
no.6A
/
pp.115-127
/
2008
The Native API is a system call which can only be accessed with the authentication of the administrator. It can be used to detect a variety of malicious codes which can only be executed with the administrator's authority. Therefore, much research is being done on detection methods using the characteristics of the Native API. Most of these researches are being done by using supervised learning methods of machine learning. However, the classification standards of Anti-Virus companies do not reflect the characteristics of the Native API. As a result the population data used in the supervised learning methods are not accurate. Therefore, more research is needed on the topic of classification standards using the Native API for detection. This paper proposes a method for re-grouping malicious codes using fuzzy clustering methods with the Native API standard. The accuracy of the proposed re-grouping method uses machine learning to compare detection rates with previous classifying methods for evaluation.
Park, Guk-Tae;Kim, Gyeong-Su;Park, Gwang-Seo;Kim, Eun-Suk;Kim, Dong-Jin
Journal of the Korean Chemical Society
/
v.50
no.3
/
pp.247-255
/
2006
The purpose of this study was to investigate the correlation between concepts on chemical reaction rates and concepts on chemical equilibrium in high school students. The subjects of the investigation consisted of 120 third grade students attending high school in K city of Kyunggi province. For this study, questionnaire relevant to the subject of chemical reaction rates and chemical equilibrium was developed and the answers were analyzed. As a result of the study, a large percentage of high school students answered questions on reaction rates correctly, but only a small percentage of the students could give explanations. Many high school students answered questions on the rates of forward reactions correctly, but not the questions on the rates of reverse reactions. For the concepts on chemical equilibrium, many high school students gave correct answers when faced with equilibrium questions that only required the understanding of one side of the reaction. But the students could not answer the questions requiring understanding of both forward and reverse reactions as well. Overall, there was a little high correlation between concepts on chemical reaction rates and concepts on chemical equilibrium in high school students. Especially, high school students with little understanding of reverse reaction rates did not understand that chemical equilibrium is a dynamic equilibrium. Also, high school students with little understanding of the collision mechanism regarding chemical reaction rates did not understand the effect of concentration and catalyst factors on chemical equilibrium. And the correlation between concepts on chemical reaction rates and concepts on chemical equilibrium related to concentration and catalyst factors was low. In conclusion, the formation of scientific concepts on chemical reactions rates can decrease misconceptions on chemical equilibrium. Also the teaching-learning method limited to one side of a reaction can cause difficulty in forming the concepts on chemical dynamic equilibrium. Therefore, the development of a teaching-learning method which covers both the forward and reverse reactions can be effective in helping students form the concepts on chemical equilibrium.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.3
/
pp.468-478
/
2018
The goal of this study is to propose a new directivity for business training based on an analysis of the learner's satisfaction, the cause of the learning effect and the cause of reenrollment in smart learning courses. The data from 878 learners of 11 companies was analyzed by ANOVA and multiple regression analysis and the following results were obtained. First of all, the satisfaction of studying by smart learning showed various results depending on the motivation, process and contents of studying. According to the results, high rates of satisfaction were observed when the people take an active part in studying, as reflected in the frequency and time of studying. Also, when the learning contents were presented in an animated manner, the satisfaction of the students was increased. Second, the motivation of the students to participate in the smart learning and study process was reflected in the frequency, time and quality of their studies, thus confirming the learning effect. Lastly, the satisfaction and effectiveness of studying by smart learning are the causes of reenrollment. Based on the analysis results, it was concluded that the corporation's support and proper compensation are needed to increase the rate of satisfaction and the effectiveness of smart learning from the corporation's perspective. Also, from the viewpoint of the smart learning system operators, it is necessary to find ways of developing the learning contents.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.3
/
pp.75-82
/
2018
Recently, emerging countries have been paying attention to Korean economic development policy, trying to adopt the Korean regional innovation model. Korea is also interested in exporting its regional innovation model and enhancing economic cooperation with those countries. This paper aims to analyze the capacity-building programs of the Korean regional innovation model for emerging countries and suggests policies for it. For this purpose, the local innovators' participation patterns in the process of collaborative learning/networking/interaction are investigated with a focused group-interview method. From an analysis of the programs supported by Korean organizations, this study finds that the correlation coefficient between the training time of capacity building and the participation rate of local members' collaborative learning is very high (0.975). Since the correlation coefficient between the participation rates of collaborative learning and networking is relatively low (0.667), a policy to link local collaborative learning to networking should be provided. As the correlation coefficient between the participation rates of networking and interaction is high (0.950), networking is a key to regional innovation. This study recommends activity programs to promote networking among local innovators, rather than training and consulting programs. As introduced in the Chungnam Techno Park case, this study suggests that the capacity-building program should include programs to initiate a collaborative learning network, to create a local-demand, regional innovation model, and to operate the regional innovation platform, which should be done by local innovators in the emerging countries.
The proposed model implements a model that improves the face prediction rate and recognition rate through learning with an artificial neural network using face detection, landmark and face recognition algorithms. After landmarking in the face images of a specific person, the proposed model use the previously learned Caffe model to extract face detection and embedding vector 128D. The learning is learned by building machine learning algorithms such as support vector machine (SVM) and deep neural network (DNN). Face recognition is tested with a face image different from the learned figure using the learned model. As a result of the experiment, the result of learning with DNN rather than SVM showed better prediction rate and recognition rate. However, when the hidden layer of DNN is increased, the prediction rate increases but the recognition rate decreases. This is judged as overfitting caused by a small number of objects to be recognized. As a result of learning by adding a clear face image to the proposed model, it is confirmed that the result of high prediction rate and recognition rate can be obtained. This research will be able to obtain better recognition and prediction rates through effective deep learning establishment by utilizing more face image data.
Journal of the Korean Institute of Telematics and Electronics C
/
v.36C
no.6
/
pp.44-51
/
1999
The HMM-Net is a neural network architecture that implements the computation of output probabilities of a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria of maximum likehood(ML) and minimization of mean squared error(MMSE) are used for learning HMM-Net classifiers. The criterion MMSE is better than ML when initial learning condition is well established. However Ml is more useful one when the condition is incomplete[3]. Therefore we propose an efficient learning method of HMM-Net classifiers using a hybrid criterion(ML/MMSE). In the method, we begin a learning with ML in order to get a stable start-point. After then, we continue the learning with MMSE to search an optimal or near-optimal solution. Experimental results for the isolated numeric digits from /0/ to /9/, a training and testing time-series pattern set, show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.
Journal of The Korean Association of Information Education
/
v.16
no.2
/
pp.245-253
/
2012
The purpose of this study is to find out the structural relations among the changing of internet use for learning, online game use, and perceived achievement. To complete this study, we set three research models and verified our hypotheses from the research models. We used Korean Youth Panel Study (KYPS) data, which surveyed beginning with fourth grade 2,844 elementary school students. We discovered that (a) there was a statically significant individual variability in initial levels and rates of change in internet use for learning. The change of trajectory was declined. (b) We also found out both initial state and changing rate of internet use for learning positively affect perceived academic achievement. (c) Lastly our study found both the concurrent and lag effects support the developmental relation between internet use for learning and game use in young adolescents.
Journal of The Korean Association of Information Education
/
v.13
no.1
/
pp.9-22
/
2009
As information technology(IT) has been rapidly developed, e-learning is also growing to meet the need of lifelong education using internet. However, with the growth of e-learning has come the big problem of high dropout rates. The purpose of this present study was to identify the major factors influencing drop-out in corporate e-learning. 250 employees(persistence: n=157, dropout: n=93) who enrolled an e-learning course in S company were participated in this study. A logistic regression analysis was performed to identify predictors of dropout. It was determined that individual background(marriage, amount of study time, difficult to combine work and family), learners' characteristics and value of the course were able to predict dropout with nearly 75 percent accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.