• Title/Summary/Keyword: Learning rates

Search Result 499, Processing Time 0.032 seconds

A Research on stock price prediction based on Deep Learning and Economic Indicators (거시지표와 딥러닝 알고리즘을 이용한 자동화된 주식 매매 연구)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.267-272
    • /
    • 2020
  • Macroeconomics are one of the indicators that are preceded and analyzed when analyzing stocks because it shows the movement of a country's economy as a whole. The overall economic situation at the national level, such as national income, inflation, unemployment, exchange rates, currency, interest rates, and balance of payments, has a great affect on the stock market, and economic indicators are actually correlated with stock prices. It is the main source of data for analysts to watch with interest and to determine buy and sell considering the impact on individual stock prices. Therefore, economic indicators that impact on the stock price are analyzed as leading indicators, and the stock price prediction is predicted through deep learning-based prediction, after that the actual stock price is compared. If you decide to buy or sell stocks by analysis of stock prediction, then stocks can be investments, not gambling. Therefore, this research was conducted to enable automated stock trading by using macro-indicators and deep learning algorithms in artificial intelligence.

The effects of learners' rating tendencies on the course evaluation results in an online university (온라인대학 학습자의 평정성향이 강의평가 결과에 미치는 영향)

  • Lee, Euikil;Kim, Yun-Jung;Kim, Joohae
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.3
    • /
    • pp.55-66
    • /
    • 2016
  • This study explored the rating tendency of online university learners in their course evaluations and its effects on the course evaluation results. Data including the subjects' demographic information, learning activities, rating tendency, and course evaluation results were collected from 1,098 learners in an online university in the spring semester of 2015. There were three main findings. First, the subjects showed distinctive rating tendencies in participation rates for course evaluation and rating consistency. The participation rates went from one extreme (0%) to the other (100%), and the rating consistency among the test items was highly related to that among the courses as a whole. Second, the subjects showed different tendencies in terms of course evaluation period, rating consistency, and course evaluation results according to demographic information and learning activities. Third, course evaluation results were independently affected by demographic information, learning activities, and rating consistency. The study was meaningful in that it explored learners' rating tendencies concretely and suggested that such tendencies should be considered in analyzing course evaluation results.

A Study on the Documents's Automatic Classification Using Machine Learning (기계학습을 이용한 문서 자동분류에 관한 연구)

  • Kim, Seong-Hee;Eom, Jae-Eun
    • Journal of Information Management
    • /
    • v.39 no.4
    • /
    • pp.47-66
    • /
    • 2008
  • This study introduced the machine learning algorithms to overcome the many different limitations involved with manual classification and to provide the users with faster and more accurate classification service. The experiments objects of the study were consisted of 100 literature titles for each of the eight subject categories in MeSH. The algorithms used to the experiments included Neural network, C5.0, CHAID and KNN. As results, the combination of the neural network and C5.0 technique recorded classification accuracy of 83.75%, which was 2.5% and 3.75% higher than that of the neural network alone and C5.0 alone, respectively. The number represented the highest accuracy rates among the four classification experiments. Thus the use of the neural network and C5.0 technique together will result in higher accuracy rates than the techniques individually.

Predictive Analysis of Problematic Smartphone Use by Machine Learning Technique

  • Kim, Yu Jeong;Lee, Dong Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.213-219
    • /
    • 2020
  • In this paper, we propose a classification analysis method for diagnosing and predicting problematic smartphone use in order to provide policy data on problematic smartphone use, which is getting worse year after year. Attempts have been made to identify key variables that affect the study. For this purpose, the classification rates of Decision Tree, Random Forest, and Support Vector Machine among machine learning analysis methods, which are artificial intelligence methods, were compared. The data were from 25,465 people who responded to the '2018 Problematic Smartphone Use Survey' provided by the Korea Information Society Agency and analyzed using the R statistical package (ver. 3.6.2). As a result, the three classification techniques showed similar classification rates, and there was no problem of overfitting the model. The classification rate of the Support Vector Machine was the highest among the three classification methods, followed by Decision Tree and Random Forest. The top three variables affecting the classification rate among smartphone use types were Life Service type, Information Seeking type, and Leisure Activity Seeking type.

An Enhanced Fuzzy Single Layer Perceptron With Linear Activation Function (선형 활성화 함수를 이용한 개선된 퍼지 단층 퍼셉트론)

  • Park, Choong-Shik;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1387-1393
    • /
    • 2007
  • Even if the linearly separable patterns can be classified by the conventional single layer perceptron, the non-linear problems such as XOR can not be classified by it. A fuzzy single layer perceptron can solve the conventional XOR problems by applying fuzzy membership functions. However, in the fuzzy single layer perception, there are a couple disadvantages which are a decision boundary is sometimes vibrating and a convergence may be extremely lowered according to the scopes of the initial values and learning rates. In this paper, for these reasons, we proposed an enhanced fuzzy single layer perceptron algorithm that can prevent from vibration the decision boundary by introducing a bias term and can also reduce the learn time by applying the modified delta rule which include the learning rates and the momentum concept and applying the new linear activation function. Consequently, the simulation results of the XOR and pattern classification problems presented that the proposed method provided the shorter learning time and better convergence than the conventional fuzzy single layer perceptron.

Side-Channel Archive Framework Using Deep Learning-Based Leakage Compression (딥러닝을 이용한 부채널 데이터 압축 프레임 워크)

  • Sangyun Jung;Sunghyun Jin;Heeseok Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.379-392
    • /
    • 2024
  • With the rapid increase in data, saving storage space and improving the efficiency of data transmission have become critical issues, making the research on the efficiency of data compression technologies increasingly important. Lossless algorithms can precisely restore original data but have limited compression ratios, whereas lossy algorithms provide higher compression rates at the expense of some data loss. There has been active research in data compression using deep learning-based algorithms, especially the autoencoder model. This study proposes a new side-channel analysis data compressor utilizing autoencoders. This compressor achieves higher compression rates than Deflate while maintaining the characteristics of side-channel data. The encoder, using locally connected layers, effectively preserves the temporal characteristics of side-channel data, and the decoder maintains fast decompression times with a multi-layer perceptron. Through correlation power analysis, the proposed compressor has been proven to compress data without losing the characteristics of side-channel data.

An analysis of the mobile learning usages of adult learners and the effects of their perceptions of mobile learning to their learning achievements in a cyber-university (사이버대학 성인학습자의 모바일러닝 활용실태 분석 및 학업성취도에 대한 모바일러닝 관련 인식의 영향 탐색)

  • Lee, Euikil
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.3
    • /
    • pp.65-74
    • /
    • 2014
  • The purposes of this study were to analyze the mobile learning usages of adult learners and how their perceptions of the mobile learning affects their learning achievements in a cyber-university. 1,118 online adult learners who enrolled in a cyber-university in Korea were involved in this study and the data for their demographic information, mobile learning usages, the perceptions of mobile learning(self-efficacy for mobile learning, perceived ease of use, perceived usefulness, and learning satisfaction) and the learning achievement were collected. The main findings of this study were as follows. First, the subjects in this study showed higher participation rates in the mobile learning with recently introduced mobile devices compared to the results of previous studies. They also showed the need of more learning materials and video streamed lectures. Second, the higher-aged subjects showed relatively higher levels of perception of mobile learning compared to the lower-aged group. Third, the effects of the subjects' perceptions of mobile learning to their learning achievement seem to be limited. It was recommended to enhance the quality of the mobile learning especially considering the relationships between the perceived usefulness and the learning achievement.

  • PDF

Improved Classification of Cancerous Histopathology Images using Color Channel Separation and Deep Learning

  • Gupta, Rachit Kumar;Manhas, Jatinder
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.175-182
    • /
    • 2021
  • Oral cancer is ranked second most diagnosed cancer among Indian population and ranked sixth all around the world. Oral cancer is one of the deadliest cancers with high mortality rate and very less 5-year survival rates even after treatment. It becomes necessary to detect oral malignancies as early as possible so that timely treatment may be given to patient and increase the survival chances. In recent years deep learning based frameworks have been proposed by many researchers that can detect malignancies from medical images. In this paper we have proposed a deep learning-based framework which detects oral cancer from histopathology images very efficiently. We have designed our model to split the color channels and extract deep features from these individual channels rather than single combined channel with the help of Efficient NET B3. These features from different channels are fused by using feature fusion module designed as a layer and placed before dense layers of Efficient NET. The experiments were performed on our own dataset collected from hospitals. We also performed experiments of BreakHis, and ICML datasets to evaluate our model. The results produced by our model are very good as compared to previously reported results.

Socio-economic Indicators Based Relative Comparison Methodology of National Occupational Accident Fatality Rates Using Machine Learning (머신러닝을 활용한 사회 · 경제지표 기반 산재 사고사망률 상대비교 방법론)

  • Kyunghun, Kim;Sudong, Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.41-47
    • /
    • 2022
  • A reliable prediction model of national occupational accident fatality rate can be used to evaluate level of safety and health protection for workers in a country. Moreover, the socio-economic aspects of occupational accidents can be identified through interpretation of a well-organized prediction model. In this paper, we propose a machine learning based relative comparison methods to predict and interpret a national occupational accident fatality rate based on socio-economic indicators. First, we collected 29 years of the relevant data from 11 developed countries. Second, we applied 4 types of machine learning regression models and evaluate their performance. Third, we interpret the contribution of each input variable using Shapley Additive Explanations(SHAP). As a result, Gradient Boosting Regressor showed the best predictive performance. We found that different patterns exist across countries in accordance with different socio-economic variables and occupational accident fatality rate.

Comparative Evaluation of Chest Image Pneumonia based on Learning Rate Application (학습률 적용에 따른 흉부영상 폐렴 유무 분류 비교평가)

  • Kim, Ji-Yul;Ye, Soo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.595-602
    • /
    • 2022
  • This study tried to suggest the most efficient learning rate for accurate and efficient automatic diagnosis of medical images for chest X-ray pneumonia images using deep learning. After setting the learning rates to 0.1, 0.01, 0.001, and 0.0001 in the Inception V3 deep learning model, respectively, deep learning modeling was performed three times. And the average accuracy and loss function value of verification modeling, and the metric of test modeling were set as performance evaluation indicators, and the performance was compared and evaluated with the average value of three times of the results obtained as a result of performing deep learning modeling. As a result of performance evaluation for deep learning verification modeling performance evaluation and test modeling metric, modeling with a learning rate of 0.001 showed the highest accuracy and excellent performance. For this reason, in this paper, it is recommended to apply a learning rate of 0.001 when classifying the presence or absence of pneumonia on chest X-ray images using a deep learning model. In addition, it was judged that when deep learning modeling through the application of the learning rate presented in this paper could play an auxiliary role in the classification of the presence or absence of pneumonia on chest X-ray images. In the future, if the study of classification for diagnosis and classification of pneumonia using deep learning continues, the contents of this thesis research can be used as basic data, and furthermore, it is expected that it will be helpful in selecting an efficient learning rate in classifying medical images using artificial intelligence.