• Title/Summary/Keyword: Learning material

Search Result 847, Processing Time 0.029 seconds

The Consequences of Development and Application of Interest Induced Learning Material on Mathematics Scholastic Achievement - Focused on vocational high school - (흥미유발 학습자료의 개발ㆍ적용이 수학과 학업성취에 미치는 영향 (실업계 고등학교를 중심으로))

  • 오수창
    • Journal of the Korean School Mathematics Society
    • /
    • v.3 no.2
    • /
    • pp.111-122
    • /
    • 2000
  • This study is focused on vocational high school students who feel hardly interested in mathematics and are considered to have very limited basic scholastic ability. It analyzes the data obtained by applying the material, extracted from the Internet and literature to school classes from March to July, for the purposes of improving the degree of scholastic achievement on the basis of the fact that interest induced learning materials were developed and applied to the students to bring about their motivation resulting in a positive change in understanding and attitudes to mathematics. According to the result of the analysis, the level of students' scholastic ability of both the comparative class and the experimental class were too low to become interested in mathematics. However, the experimental class students seemed to feel familiar to the learning materials rather than reluctant, and it appeared that their interest and behavior of learning began to change gradually in an extent. In addition to that, as an aspect of scholastic achievement there was not considerable difference between the two classes, but as time went, some valuable changes were found. Unfortunately, the size of group of the research was small and the period of the experimental classes was not extensively long, and therefore the same result might not occur in other groups. However, it is believed that in class-time, educating students by putting in learning materials bringing about relevant motivation to the class, will lead them to become interested in mathematics, and change their attitudes and understanding of mathematics. After all, scholastic achievement will be effective.

  • PDF

Verified Deep Learning-based Model Research for Improved Uniformity of Sputtered Metal Thin Films (스퍼터 금속 박막 균일도 예측을 위한 딥러닝 기반 모델 검증 연구)

  • Eun Ji Lee;Young Joon Yoo;Chang Woo Byun;Jin Pyung Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.113-117
    • /
    • 2023
  • As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.

  • PDF

A Study of Using Concrete Materials and Mathematical Communications in the Primary Mathematics Class - Focused on 2nd Grades in Primary school - (초등학교 수학 수업에서의 구체물 활용과 수학적 의사소통에 관한 연구 - 2학년 아동을 중심으로 -)

  • Lee Me Ae;Kim Soo Hwan
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.5 no.1
    • /
    • pp.99-120
    • /
    • 2001
  • The purpose of this thesis is to find the guiding direction of mathematical communication in lower grade students of elementary school and to present a new direction about the effect of using concrete material in communication. It is expected that mathematical communication increases when concrete material is used for the students of the lower grades, who are in concrete operational period. Therefore, this study ai s to investigate what characteristics there are in mathematical communication of second grade students and what effect concrete materials have on mathematical communication and learning. The analysis of the teaching record shows that the second grade students use alternative terms in the process of communication since they are not familiar with mathematical symbols or terms, which is a characteristic of communication in a mathematics class in which concrete material is used. In the process of teaming the students apply their living experiences to their teaming. Since a small number of students lead class, the interaction between students is also led by them. The direction of communication in a small group is not centered around solution of a problem, and most students show a more interest in finding answers than in the process of learning. The effect that concrete material has on communication plays an important role in promoting students' speaking activity; it allows students to identify and correct their errors more easily. It also makes students' activities more predictable, and it increases a small group activities through the medium of concrete material. However, it was also noticed that students' listening activities are not appropriately developed since they do not pay attention to a teacher who uses concrete material. The effects that concrete material has on mathematics class can be summarized as follows. Concrete material promotes students' participation in class by triggering their interest of learning of mathematics and helps them to understand the course of learning. It also helps the teaming and formation of concepts for children of low academic performance. And it makes a phased learning possible according to students' ability to use concrete material and to solve a problem. Based upon the results above mentioned, the use of concrete material is absolutely needed in mathematics classes of lower grade elementary school students since it increases communication and gives much influence on mathematics learning. Therefore, teachers need to develop teaching or learning method which can help increase communication, considering the characteristics of students' communication.

  • PDF

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

Machine Learning based Seismic Response Prediction Methods for Steel Frame Structures (기계학습 기반 강 구조물 지진응답 예측기법)

  • Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.91-99
    • /
    • 2024
  • In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.

Influences of Physical Education Classes based on Flipped Learning of Self-directed Learning Abilities and Attitude towards These Classes, for Middle School Students

  • Lee, Dae Jung;Kim, Dae Jin
    • International Journal of Contents
    • /
    • v.15 no.2
    • /
    • pp.59-74
    • /
    • 2019
  • The objective of this study was to analyze the influence of physical education classes based on Flipped Learning on self-directed learning abilities and learning attitude towards these classes, for middle school students. The study selected 90 students as an experimental group (3 classes) and 97 students as a control group (3 classes), among 240 students of the first-year students attending a middle school located at Jeonju City of South Korea, applying convenience sampling, one of the non-probability sampling methods. For the experimental group, 36 sessions of physical education classes were held for 14 weeks, while the control group received teacher-centered classes. Comparing the results with the control group, the experimental group showed significant differences in terms of all sub factors of self-directed learning abilities, namely; desire for learning, learning objective establishment, basic self-management abilities, selection of learning strategy and self-reflection. Moreover, the experimental group manifested significant differences in terms of all sub factors of attitude towards the physical education subjects, namely; positive emotions, negative emotions, health & physical strength, interpersonal relations, physical activities & movements, and active participation & positive performance. From the findings, it can be considered that physical education classes based on Flipped Learning contributed to improving self-directed learning abilities and attitude towards physical education classes. This result can serve as a significant basic material for designing and performing classes in raising the understanding of Flipped Learning and effectively applying Flipped Learning in physical education classes.

Study of Moderating Effect of Incentives on the Relationship between Digital Literacy and Informal Learning of Office Workers: A Chinese Case (사무직 직원의 디지털 리터러시와 무형식 학습의 관계에서 인센티브의 조절효과에 대한 연구: 중국의 사례를 중심으로)

  • Chi, Yuchen;Paek, Jeeyon;Cho, Hyun-Jung;Lee, JiYon
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.173-192
    • /
    • 2022
  • This study discusses whether digital literacy of Chinese white-collar workers influences informal learning and investigates the moderating effect of incentives on the relationship between digital literacy and informal learning. The aim of the research is twofold. First, it attempts to determine whether digital literacy of white-collar employees has a positive correlation with informal learning. The study further examines whether incentives from companies-material and non-material-have a moderating effect on the relationship between digital literacy of white-collar employees and informal learning. The ability to handle ICT devices and to utilize information both indicate positive correlations with knowledge acquisition through job performance, cultivation of self-development ability, and learning. Signficantly, the material and non-material incentives had a moderating effect only on the relationship between the ability to utilize information and knowledge acquisition through job performance, which was not revealed in other relationships. Overall, the findings may have practical implications of analysis to hire and train workers in Chinese companies and to design compensation schemes for corporate incentives.

Deep Learning-based Material Object Recognition Research for Steel Heat Treatment Parts (딥러닝 기반 객체 인식을 통한 철계 열처리 부품의 인지에 관한 연구)

  • Hye-Jung, Park;Chang-Ha, Hwang;Sang-Gwon, Kim;Kuk-Hyun, Yeo;Sang-Woo, Seo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.327-336
    • /
    • 2022
  • In this study, a model for automatically recognizing several steel parts through a camera before charging materials was developed under the assumption that the temperature distribution in the pre-air atmosphere was known. For model development, datasets were collected in random environments and factories. In this study, the YOLO-v5 model, which is a YOLO model with strengths in real-time detection in the field of object detection, was used, and the disadvantages of taking a lot of time to collect images and learning models was solved through the transfer learning methods. The performance evaluation results of the derived model showed excellent performance of 0.927 based on mAP 0.5. The derived model will be applied to the model development study, which uses the model to accurately recognize the material and then match it with the temperature distribution in the atmosphere to determine whether the material layout is suitable before charging materials.

Experimental investigating and machine learning prediction of GNP concentration on epoxy composites

  • Hatam K. Kadhom;Aseel J. Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.403-415
    • /
    • 2024
  • We looked at how the damping qualities of epoxy composites changed when different amounts of graphite nanoplatelets (GNP) were added, from 0% to 6% by weight. A mix of free and forced vibration tests helped us find the key GNP content that makes the damper ability better the most. We also created a Representative Volume Element (RVE) model to guess how the alloys would behave mechanically and checked these models against testing data. An Artificial Neural Network (ANN) was also used to guess how these compounds would react to motion. With proper hyperparameter tweaking, the ANN model showed good correlation (R2=0.98) with actual data, indicating its ability to predict complex material behavior. Combining these methods shows how GNPs impact epoxy composite mechanical properties and how machine learning might improve material design. We show how adding GNPs to epoxy composites may considerably reduce vibration. These materials may be used in industries that value vibration damping.

A Study on the Learning Experience of Participating in a Collaborative Problem-Solving Learning Model from a Student's Perspective: Qualitative Analysis from Focus Group Interviews

  • Lee, Sowon;Kim, Boyoung;Kim, Seonyoung
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.160-169
    • /
    • 2022
  • This qualitative study aimed to investigate ways to improve effective cooperative learning from students' perspective by understanding and analyzing the learning experiences of nursing students who participated in a collaborative problem-solving learning model. Data were collected through focus group interviews and reflection journals of six second-year nursing students from G-university in J-city who participated in a collaborative problem-solving learning model course. The interview data were analyzed and divided into 3 categories and 10 subcategories according to the six-step thematic analysis method proposed by Braun and Clarke. The results of analyzing the interviews were considered based on three areas: preparation before learning, the process of collaborating as a cooperative learning experience, and solutions and expectations after learning. The participants felt frustrated because collaborative problem-solving took more time for individual learning than traditional methods did and would not allow them to check the correct answers immediately. However, they gained new experiences by solving problems and engaging in discussions within their learning community. The participants' expectations included material that could help their learning, measures to prevent free-riders, and consideration of the learning process in evaluation factors. Although this study has sample limitations by targeting nursing students in only one region, it can be used to help operate collaborative problem-solving classes, as it reflects the real experiences and opinions of students.