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Online Evolution for Cooperative Behavior in Group Robot Systems

Dong-Wook Lee, Sang-Wook Seo, and Kwee-Bo Sim*

Abstract: In distributed mobile robot systems, autonomous robots accomplish complicated tasks
through intelligent cooperation with each other. This paper presents behavior learning and online
distributed evolution for cooperative behavior of a group of autonomous robots. Learning and
evolution capabilities are essential for a group of autonomous robots to adapt to unstructured
environments. Behavior learning finds an optimal state-action mapping of a robot for a given
operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed
rewards in the distributed robot systems. A group of robots implements cooperative behaviors
through communication with other robots. Individual robots improve the state-action mapping
through online evolution with the crossover operator based on the Q-values and their update
frequencies. A cooperative material search problem demonstrated the effectiveness of the
proposed behavior learning and online distributed evolution method for implementing
cooperative behavior of a group of autonomous mobile robots.

Keywords: Cooperative behavior, distributed evolutionary algorithm, distributed mobile robot

system, dxperience-based crossover, Q-learning, reinforcement learning.

1. INTRODUCTION

In distributed autonomous robot systems, a team of
mobile robots accomplishes complicated tasks
through interactions with environments and other
robots.  Cooperative  behaviors in  distributed
autonomous robot systems can be implemented using
swarm intelligence and intentional cooperation [1,2].
The swarm type cooperation often deals with large
numbers of homogeneous robots. The robots do not
explicitly work together, but group-level cooperative
behavior emerges from their interactions with each
other and the environment. Distributed systems of
homogeneous robots are usually more fault-tolerant
than centralized or leader-follower architectures of
mobile robot systems. The overall system
performance does not degrade significantly by the
malfunction of a small number of robots. In
intentional cooperation, robots cooperate explicitly
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and with a purpose, usually through task-related
communications. Distributed robot systems can be
easily extended to handle large-scale problems, since
the communication complexity does not increase
much as the number of robots increases [3,4].

An autonomous robot can demonstrate two types of
interactions: sensing and communication. Individual
robots sense the existence and recognize the types of
objects such as target materials and obstacles.
Autonomous robots are required to cooperate with
other robots in a dynamic, unstructured environment
such as space and deep sea. A set of fixed control rules
will not work in such operating environments. The
controller must be able to adaptively determine the
optimal actions at each step. Cooperative behavior of
autonomous mobile robots emerges from local
communications between individual robots. A group
of mobile robots exchange information with
neighboring individuals within a communication
range to accomplish the tasks in cooperative manner.

Behavior learning finds an optimal state-action
mapping of a mobile robot for a given operating
condition. Each robot is required to decide an optimal
action for a set of given sensor inputs. In
reinforcement learning, an agent effectively learns the
behaviors by a reinforcement signal when a prior
knowledge on the environment is not available.
Popular reinforcement learning algorithms include
actor-critic architecture based on time differentiate
(TD) method [5,6] and Q-learning [7-10]. Each robot
improves the current state-action rules by Q-learning
according to the reward or penalty given by the result
of an action. In distributed autonomous robot systems,
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however, reward and penalty terms may not be
calculated immediately due to the delay in evaluation.
This paper presents a modified Q-learning algorithm
to handle delayed rewards.

Cooperative behaviors of autonomous robots can be
developed from evolutionary operations of the
information of individual robots. Robots exchange
information through local communication with other
individuals. Conventional evolutionary algorithms
rely on the operations such as selection, crossover,
and mutation in a population of individuals. Crossover
operation usually finds two offspring chromosomes
from two parents. Distributed evolutionary algorithms
enable an individual robot to improve the learning
ability online through exchanging the acquired
information with other robots. In distributed
evolutionary algorithms, system components are
evolved separately. For example, a population [11,12]
or a chromosome [13] can be divided into subgroups
and are evolved independently in multiple parallel
processors. Each mobile robot retains one of the two
chromosomes having more update frequencies of Q-
values. Such experience-based crossover operation
selects the genes to increase the probability to keep
superior genes in the subsequent generations.

This paper presents behavior learning of individual
autonomous robots based on reinforcement learning
and online distributed evolutionary algorithm for
cooperative behaviors of the robots in unstructured
environments. Individual robots develop an optimal
state-action mapping by the behavior learning.
Cooperative behaviors of the robots evolve through
the communications with other individuals within a
communication range. A group of autonomous mobile
robots are required to search and collect target
materials scattered in an open space as quickly as
possible in a cooperative manner without collisions
with obstacles and other robots. Each robot interacts
with the environment through the sensors mounted on
the perimeter of the body. The sensors detect the
existence of objects and recognize target materials and
obstacles. The Q-learning finds the best state-action
pairs for behavior learning of individual robots. The
robots build cooperative behaviors online using the
distributed evolutionary  algorithms. A  robot
communicates with neighboring robots within a
communication range to exchange information. When
a robot encounters superior state-action rules, the
robot receives the rules and reproduces new rules
using evolutionary operations.

2. BEHAVIOR LEARNING OF
AUTONOMOUS ROBOTS

2.1. Autonomous mobile robot
A group of robots are required to search and collect
target materials spread over a space in collaboration
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Fig. 1. Sensor arrangement of mobile robot.

with other robots. A robot has the abilities such as
local communications with neighboring robots and
collision avoidance with obstacles or other robots. An
individual mobile robot is equipped with two wheels,
sensors, actuators, and communication devices. Fig. 1
shows a sensor arrangement of a mobile robot. A
robot can detect the existence of near objects and
measures the distance to the object having infrared
(IR) sensors within a limited sensing range. A robot is
assumed to be able to distinguish the target materials
from the obstacles and robots based on the color.
There are eight sensors around the robot, 45 degrees
apart. The sensors are grouped into four directions:
Forward (Sg), Right (S;, S;, S3), Rear (S4), and Left
(Ss, S¢, S7). Only one sensor becomes active at a time
for a near object in that direction. Each sensor can
have three possible sensing states: No Object (0),
Material (1), and Object (obstacle or robot) (2). From
the sensor inputs, a robot detects three possible states
in each of four directions. The total number of
possible states of a robot is 81 (= 34). Sensing range is
usually much smaller than a communication range.
The behavior of a robot can be defined by a state-
action mapping. Five actions are defined as follows:

+ Random Move (RM)

* Move Forward (MF)
Turn Right (TR)

* Turn Left (TL)

« Approaching Target (AT)

Random Move refers to turming to an arbitrary
direction and moving forward. Move Forward defines
the moving in the forward direction. Turn Right and
Turn Left define the moves that a robot turns 45
degrees to the right and to the left and move forward.
Approaching Target defines the movement toward a
detected object. If more than one object is detected, a
robot moves toward the nearest object. If no object is
detected, a robot moves forward. A robot has no a
priori knowledge that an object is useful to approach.
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2.2. Robot behavior learning with reinforcement
learning

Behavior learning refers to finding an optimal state-
action mapping of a mobile robot for a given
operating condition. Each robot is required to make an
optimal decision for an action given sensor inputs.
Reinforcement learning is suitable especially for
agent-based applications, since the signal used to learn
the model comes from elaboration of the
reinforcement function to represent the behavior of
agents. Reinforcement learning maximizes the
rewards that a learning agent receives to improve the
behaviors through the interaction with the
environment using a reinforcement signal [6].

Q-learning [7] has been developed as a method of
model-free reinforcement learning based on stochastic
dynamic programming. Q-learning is suitable in
robotics applications since it is applicable to online
learning with finite states and actions of a robot. A
robot gradually learns the behavior rules through the
Q-learning mechanism. A robot can take a set of
actions (4) given a set of states (5). A state and action
mapping is stored in the form of Q-table, a collection
of all the possible Q-values of state-action
combinations. In this paper, the set S consists of 81
states and the set 4 has five actions that correspond to
405 (= 81x5) Q-values. As the iterations of Q-learning
go on, one of Q-values becomes dominant for each
state. A state-action pair with a dominant Q-value is
regarded as an optimal state-action rule.

In this paper, a modified Q-learning is used for
behavior learning of individual mobile robots. In a
distributed autonomous mobile robot system, reward
(or penalty) for a robot behavior may not be
calculated immediately, but after a series of behaviors.
Hence delayed rewards for an action must be counted.
Algorithm 2 shows a modified Q-learning algorithm
with delayed rewards. Delayed reward takes an
important role that it enforces the previous steps that
affect current action. In (1), a temperature coefficient
T reduces the probability of behavior selection as
learning proceeds. As the 7-value decreases, the
difference of the P(a) values of each action for a
random state s becomes large, so the probability of
choosing the action with the largest Q-value increases.
In early stage, the probability of choosing various
actions is high (exploration). As learning gradually
proceeds, the system uses previously learned results
(exploitation). A series of previous actions affect the
current action with decreasing influence. The term g
(0 < g < 1) is introduced to reduce the effect of
previous actions to current actions gradually as the
step goes to the maximum K previous steps.

Algorithm 1 (Q-learning Algorithm with Delayed
Reward):

1. Initialize Q(s;, a;) to small values for all the states

s;€8, i=1, -, N, and actions g;eA4,j =1, -, N,. N,

and N, denote the numbers of states and actions.
2. Obtain the current state s.
3. Choose an action a in proportion to the probability

exp(Q(s,q;)/T)
g(:)exp(Q(s,aj)/T)

where T is a temperature parameter that gradually
decreases to zero.

4. Carry out action a in the environment. Let the next
state be s'.

5.1f a delayed reward r is calculated then update
current Q-value Q(sg,a0) and past Q-values Q(sy,ay),
k=1,...,K.

O (sk’ak):(l—a)Qt(Sk’ak)
ool
+a|p r+ymaxQ,(sk,ak) ,

P(a;)= , ()

areA

where K denotes the maximum previous steps that

affect current action, and S is a constant between 0

to 1.

6. Repeat the steps 2-5.

After the learning is completed, we pick the action
corresponding to the maximum Q-value. The relation
of states and actions can be represented as a Q-table
[7,8]. The Q-table consists of 405 Q-values
corresponding to 81 states s;, i =0, 1, ..., 80 and 5
actions agp (RM), a (MF), ar (TR), as (TL), ay (AT) in
the form of 81-by-5 matrix. Each state s; is composed
of four sensor inputs of [Forward, Right, Rear, Left].
For example, a robot senses a material in the right and
an object in the rear, the state of the robot becomes [0
120].

2.3. Material collection experiment

As an experimental setting, the materials and
obstacles are randomly scattered in a working space.
There are 25 mobile robots used in this expetiment of
the diameter 0.05m. The sensing range is assumed
0.44m. The actions of RM, TR, and TL involve a
robot movement of turning and moving of 0.1 m. In
MF action, a robot moves forward of 0.15m. Mobile
robots search and collect target materials in a
workspace. At each iteration, the workspace is reset
with randomly generated target materials and
obstacles. Algorithm 2 needs some parameters to be
decided by user heuristically. For example, there are 7,
a, B, y, and K. The temperature parameter 7 was
chosen as the function 7(j) = 2 — 0.03; at j-th iteration.
The other parameter values used in this experiment
are = 0.1, B=0.75, y=0.25, and K = 3. r equals +1
for reward, and r equals —1 for penalty.

Fig. 2(a) shows the number of target materials
collected by a group of robots.
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Fig. 2. Performance comparison of with and with-out
Q-learning.

3. ONLINE EVOLUTION OF COOPERATIVE
BEHAVIOR

This paper demonstrates cooperative behavior of a
group of mobile robots through local interactions with
neighboring robots. A group of robots are expected to
search and collect target materials scattered in a
workspace as quickly as possible while avoiding
collisions with the obstacles and the other robots.
Robots cooperate with each other using local
communications to reduce the time to collect all the
materials. Robots within communication range
exchange information to implement cooperative
behaviors. Each robot evolves by exchanging learned
information with other robot through local
communications.

In distributed evolutionary algorithm, each robot
can calculate the fitness value by reinforcement
learning and can select and reproduce by
communications. The fitness is calculated for all
robots under same condition. A robot calculates the
fitness value using (3) based on rewards, penalties,

and consumed energy during the evaluation time 7,
which has been set to 300 sec. If a robot is not
evaluated during 7., after reproduction of its
chromosome, the robot cannot exchange the
information with other robot because the robot has no
fitness value of new generated chromosome. A robot
selects the other robot to crossover based on the
fitness value computed during the evaluation time.

Fitness = wN, —w, N, (3)

where N, and N, denote the numbers of rewards and
penalties. The parameters w; and w, are positive
weight values.

If robot 4 encounters robot B whose fitness is
higher, for example, then robot A4 receives the
chromosome of robot B and reproduces chromosome
using the experience-based crossover. In this case,
robot B does not change the chromosome. The
information is passed from superior robot to inferior
robots. A robot improves the performance by
combining other robot’s chromosome obtained from
different environment with the chromosome. The
state-action rules in the form of Q-table are encoded
in chromosomes for evolution operation.

This paper proposes a new crossover method based
on learning times to find a chromosome for a robot. A
chromosome consists of Q-values and L-values as the
number of updates of Q-values. Therefore the
crossover uses learning frequencies (L-values) as well
as Q-values. A chromosome of robot can be
represented by a pair of x (Q-value) and / (L-value) of
the parents.

(xp,lp)=[(xf,...,x;),(zf,---,z;z)} )

where m is the total number of genes. A gene is a
subset of Q-values that have same state. For example,
a robot has one chromosome that is composed of 81
genes and a gene is composed of 5 Q-values. New
offspring generated by the crossover is represented as

)i o]l

where
!
1 p<——=,i=0,--,m
5 = e
2 otherwise,

pi is a random number from 0 to 1. The chromosomes
of offspring are inherited from parents 1 and parents 2
according to the learning frequencies (/). Robots share
the information on the environment that they have not
yet been in. As a result, a robot obtains learning data
on the environment that the robot has not been from
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Fig. 4. Evolution trends.

other individual robots by experience-based crossover.
A robot gets better chromosomes from other robots so
that the robot indirectly learns the environment that it
has not been experienced before.

The proposed online evolution method was
compared for the three cases: (1) No learning and
evolution, (2) Learning only, and (3) Learning and

evolution. Case 1 wuses the robots with no
reinforcement learning for the behavior and no
evolution through local communications with the
other robots. In Case 2, the robots learn the
environment to avoid collisions with other objects
using Q-learning. Case 3 involves the robots with
behavior learning capability and online evolution. Fig.
3 shows the total fitness variation of the robot system
as iteration increases for w; = w, = 0.5. Fig. 4 shows
evolution trends when the robots use learning and
evolution with experience-based crossover. The robot
system with learning and online evolution capability
collects the materials more effectively. Total fitness is
calculated using the number of collected materials and
collisions for iteration. Total fitness is the difference
between the number of collected materials and the
number of collisions. The total fitness of Case 3
increases faster than the other cases. The performance
of robot system is improved as a result of online
evolution with experience-based crossover.

4. CONCLUSION

In distributed mobile robot systems, autonomous
robots cooperate with each other to accomplish
complicated tasks in unstructured environment. This
paper presents behavior learning and online
distributed evolution for cooperative behavior of a
group of autonomous mobile robots. Behavior
learning finds an optimal state-action mapping for a
given operating condition. A robot develops a set of
optimal state-action rules for given operating
environments. In behavior learning, a Q-learning
algorithm is modified to handle delayed rewards in the
distributed robot systems. A group of robots
implements cooperative behaviors through local
communications with other robots. Individual robots
improve the state-action mapping through online
evolution with the crossover operator based on the Q-
values and their update frequencies. Such experience-
based crossover operation selects the genes to increase
the probability to retain superior genes in the
subsequent generations. A cooperative material search
problem demonstrated the effectiveness of the
proposed behavior learning and online distributed
evolution method for implementing cooperative
behavior of distributed mobile robot systems.
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