Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurological disorders in children. The diagnosis of ADHD in children is based on the interviews and observation reports of parents or teachers who have stayed with them. Since this approach cannot avoid long observation time and the bias of observers, another approach based on Electroencephalography(EEG) is emerging. The goal of this study is to develop an assistive tool for diagnosing ADHD by EEG classification. This study explores the frequency bands of EEG and extracts the implied features in them by using the proposed CNN. The CNN architecture has three Convolution-MaxPooling blocks and two fully connected layers. As a result of the experiment, the 30-60 Hz gamma band showed dominant characteristics in identifying EEG, and when other frequency bands were added to the gamma band, the EEG classification performance was improved. They also show that the proposed CNN is effective in detecting ADHD in children.
Tariq Rafiq;Zafar Iqbal;Tahreem Saeed;Yawar Abbas Abid;Muneeb Tariq;Urooj Majeed;Akasha
International Journal of Computer Science & Network Security
/
제23권4호
/
pp.179-186
/
2023
For the future prosperity of any society, the sound growth of children is essential. Autism Spectrum Disorder (ASD) is a neurobehavioral disorder which has an impact on social interaction of autistic child and has an undesirable effect on his learning, speaking, and responding skills. These children have over or under sensitivity issues of touching, smelling, and hearing. Its symptoms usually appear in the child of 4- to 11-year-old but parents did not pay attention to it and could not detect it at early stages. The process to diagnose in recent time is clinical sessions that are very time consuming and expensive. To complement the conventional method, machine learning techniques are being used. In this way, it improves the required time and precision for diagnosis. We have applied TFLite model on image based dataset to predict the autism based on facial features of child. Afterwards, various machine learning techniques were trained that includes Logistic Regression, KNN, Gaussian Naïve Bayes, Random Forest and Multi-Layer Perceptron using Autism Spectrum Quotient (AQ) dataset to improve the accuracy of the ASD detection. On image based dataset, TFLite model shows 80% accuracy and based on AQ dataset, we have achieved 100% accuracy from Logistic Regression and MLP models.
Objectives The aim was to find effective vectorization and classification models to predict a psychiatric diagnosis from text-based medical records. Methods Electronic medical records (n = 494) of present illness were collected retrospectively in inpatient admission notes with three diagnoses of major depressive disorder, type 1 bipolar disorder, and schizophrenia. Data were split into 400 training data and 94 independent validation data. Data were vectorized by two different models such as term frequency-inverse document frequency (TF-IDF) and Doc2vec. Machine learning models for classification including stochastic gradient descent, logistic regression, support vector classification, and deep learning (DL) were applied to predict three psychiatric diagnoses. Five-fold cross-validation was used to find an effective model. Metrics such as accuracy, precision, recall, and F1-score were measured for comparison between the models. Results Five-fold cross-validation in training data showed DL model with Doc2vec was the most effective model to predict the diagnosis (accuracy = 0.87, F1-score = 0.87). However, these metrics have been reduced in independent test data set with final working DL models (accuracy = 0.79, F1-score = 0.79), while the model of logistic regression and support vector machine with Doc2vec showed slightly better performance (accuracy = 0.80, F1-score = 0.80) than the DL models with Doc2vec and others with TF-IDF. Conclusions The current results suggest that the vectorization may have more impact on the performance of classification than the machine learning model. However, data set had a number of limitations including small sample size, imbalance among the category, and its generalizability. With this regard, the need for research with multi-sites and large samples is suggested to improve the machine learning models.
An accurate approach for diagnosis of attention deficit hyperactivity disorder (ADHD) is presented in this paper. The presented technique efficiently classifies three subtypes of ADHD (ADHD-C, ADHD-H, ADHD-I) and typically developing control (TDC) by using only structural magnetic resonance imaging (MRI). The research examines structural MRI of the hippocampus from the ADHD-200 database. Each available MRI has been processed by a region-of-interest (ROI) to build a set of features for further analysis. The presented ADHD diagnostic approach unifies feature selection and classification techniques. The feature selection technique based on the proposed binary-coded genetic algorithm searches for an optimal subset of features extracted from the hippocampus. The classification technique uses a chosen optimal subset of features for accurate classification of three subtypes of ADHD and TDC. In this study, the famous Extreme Learning Machine is used as a classification technique. Experimental results clearly indicate that the presented BCGA-ELM (binary-coded genetic algorithm coupled with Extreme Learning Machine) efficiently classifies TDC and three subtypes of ADHD and outperforms existing techniques.
Human voice reacts very sensitively to human's minute physical condition. For instance, human voice disorders affect patients profoundly especially in the case of Parkinson's disease. Acoustic tools such as MDVP, can function as an equipment that measures various voice in different objects. Many different approaches have been applied for analyzing the voice disorders for diagnosis of Parkinson's disease. According to the voice data of suspected Parkinson's patients from UCI Machine Learning Repository, it is reported to have 23 people with Parkinson's disease and 8 healthy people. Applying Mahalanobis Taguchi System (MTS) for diagnosis of Parkinson's disease, the correct diagnosis performance is compared to previous research results.
Attention-deficit/hyperactivity disorder(ADHD) is one of the most common childhood-onset psychlatric disorders. It is distinguished by symptoms of inattention, hyperactivity, and impulsivity. ADHD may be accompanied by learning disabilities, depression, anxiety, conduct disorder, and oppositional defiant disorder. The etiology of ADHD is unknown, and the disorder may have several different causes. Individual with ADHD present in childhood and may continue to show symptoms as they enter adolescence and adult life. Public interest in ADHD has increased along with debate in the media concerning the diagnostic process and treatment strategies. The purpose of this study is oriental medical approach to ADHD. This study was progressed for oriental diagnosis and treatment for ADHD. In oriental medicine, the reason of ADHD was deficiency of the kidney, hyperactivity of the liver(腎虛肝亢), deficiency of the heart and the spleen(心脾不足), heart disturbed by phlegm and heat(痰熱擾心). The method of medical treatment was nourishing the kidney and checking exuberance of yang(滋腎潛陽), relieving mental stress and promoting wisdom(寧神益智), nourishing the heart and strengthening the spleen(養心健脾), tranquilzation(安神定志). removing heat-phlegm(淸熱化痰), inducing resuscitation and tranquilzation(開窮安神). The prescription was commonly used as Liuwei Dihuang Wan jiajian(六味地黃丸加減), Guipi Tang he Ganmai Dazao Tang jiajian(歸脾湯合甘麥大棗湯加減), Huanglian Wendan Tang jiawei(溫黃連溫膽湯加味). It should help primary care providers in their assessment of a common child health problem.
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
제22권1호
/
pp.16-24
/
2011
Objectives:This study examined the prevalence of psychiatric problems in children with scholastic difficulties who had been referred for mental health services from the Office of Education in Ulsan Metropolitan City. Methods:Child psychiatrists evaluated the referred children using the DSM-IV. Evaluation tools included the Wechsler Intelligence Scale for Children-III, the Children's Depression Inventory, the Korean form of the State-trait anxiety Inventory for children, the ADHD rating. Results:Seventy-six children consisting of 64 boys (84.2%) and 12 girls (15.8%) participated in the study. The average age was 10.3 (SD=0.93) years old. Approximately 74% of the children referred for scholastic difficulties were diagnosed with mental retardation. The Axis I diagnosis among these children were ADHD (86.8%), depression (21.1%), learning disorder (9.2%), communication disorder (4.8%), pervasive developmental disorder (3.6%), internet addiction (1.3%), and mood disorder (1.3%). Their overall measure according to the Child Depression Inventory was 22.7 (SD=16.8), that for the State-Trait Anxiety Inventory for Children was 33.3 (SD=7.9)/32.4 (SD=9.5), and that for the ADHD rating scale was 18.9 (SD=10.9). Conclusion:These results suggest that many children with scholastic difficulties have both complex psychiatric and educational problems.
Purpose: We aimed to investigate the objective cutoff values of unstimulated flow rates (UFR) and stimulated salivary flow rates (SFR) in patients with xerostomia and to present an optimal machine learning model with a classification and regression tree (CART) for all ages. Materials and Methods: A total of 829 patients with oral diseases were enrolled (591 females; mean age, 59.29±16.40 years; 8~95 years old), 199 patients with xerostomia and 630 patients without xerostomia. Salivary and clinical characteristics were collected and analyzed. Result: Patients with xerostomia had significantly lower levels of UFR (0.29±0.22 vs. 0.41±0.24 ml/min) and SFR (1.12±0.55 vs. 1.39±0.94 ml/min) (P<0.001), respectively, compared to those with non-xerostomia. The presence of xerostomia had a significantly negative correlation with UFR (r=-0.603, P=0.002) and SFR (r=-0.301, P=0.017). In the diagnosis of xerostomia based on the CART algorithm, the presence of stomatitis, candidiasis, halitosis, psychiatric disorder, and hyperlipidemia were significant predictors for xerostomia, and the cutoff ranges for xerostomia for UFR and SFR were 0.03~0.18 ml/min and 0.85~1.6 ml/min, respectively. Conclusion: Xerostomia was correlated with decreases in UFR and SFR, and their cutoff values varied depending on the patient's underlying oral and systemic conditions.
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
제7권2호
/
pp.247-257
/
1996
본 연구는 삼성의료원 소아정신과 학습장애 특수 클리닉에 내원한 학습부진 아동을 대상으로 학습부진의 원인이 되는 장애와 학습부진 아동에서 학습장애의 유병율을 알아보고자 하였다 이들은 $6{\sim}15$세 사이의 197명으로 구성되었으며 결과는 아래와 같았다. 1) 대상군중 우울증등의 정서장애가 33%로 가장 많았으며 주의력결핍 과잉황동장애가 31%로 두번째의 빈도를 나타내었다. 2) 대상군중 학습장애 환아는 41명으로 20.8%의 빈도율을 보였다. 3) 학습장애의 공존병리중 주의력결핍 과잉활동장애가 44%로 가장 높은 빈도를 나타내었다. 4) 주의력결핍 과잉활동장애가 공존하는 학습장애군과 학습장애만 있는 군에서는 성별이나 연령차이, 지능차이는 없었으며 뇌파의 이상 소견에 대해서도 차이가 없었다. 그러나 주의력결핍 과잉활동장애가 없는 단독 학습장애군은 주의력결핍 과잉활동장애가 공존하는 학습장애군보다 더 늦은 나이에 발병하였고 학업성취도 면에서 우수하였는데 특히 국어, 수학, 사회, 음악 과목에서 격차가 컸다.
Objectives: This study is a clinical report of a patient with ADHD and learning disorders who is being treated with hyperbaric oxygen, scalp acupuncture, cognitive enhancement therapy and speech-language therapy. Methods: The BASA-R, BASA-M and REVT tests were used for the diagnosis of learning disorders. For the treatment, hyperbaric oxygen therapy, scalp acupuncture, cognitive enhancement therapy and speech-language therapy were all being used. The Raven's matrix tests were compared for between before and after the abovementioned therapies. Results: After the treatment, Raven's matrix test grade improved from 4 to 5. The improvement of the patient's concentration, communication, motion, confidence, and sleep conditions were observed. Conclusions: These therapies including the hyperbaric oxygen therapy are efficient for the treatment of ADHD and learning disorders.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.