• Title/Summary/Keyword: Learning data set

Search Result 1,114, Processing Time 0.027 seconds

Deep learning-based sensor fault detection using S-Long Short Term Memory Networks

  • Li, Lili;Liu, Gang;Zhang, Liangliang;Li, Qing
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.51-65
    • /
    • 2018
  • A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.

IPMN-LEARN: A linear support vector machine learning model for predicting low-grade intraductal papillary mucinous neoplasms

  • Yasmin Genevieve Hernandez-Barco;Dania Daye;Carlos F. Fernandez-del Castillo;Regina F. Parker;Brenna W. Casey;Andrew L. Warshaw;Cristina R. Ferrone;Keith D. Lillemoe;Motaz Qadan
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.27 no.2
    • /
    • pp.195-200
    • /
    • 2023
  • Backgrounds/Aims: We aimed to build a machine learning tool to help predict low-grade intraductal papillary mucinous neoplasms (IPMNs) in order to avoid unnecessary surgical resection. IPMNs are precursors to pancreatic cancer. Surgical resection remains the only recognized treatment for IPMNs yet carries some risks of morbidity and potential mortality. Existing clinical guidelines are imperfect in distinguishing low-risk cysts from high-risk cysts that warrant resection. Methods: We built a linear support vector machine (SVM) learning model using a prospectively maintained surgical database of patients with resected IPMNs. Input variables included 18 demographic, clinical, and imaging characteristics. The outcome variable was the presence of low-grade or high-grade IPMN based on post-operative pathology results. Data were divided into a training/validation set and a testing set at a ratio of 4:1. Receiver operating characteristics analysis was used to assess classification performance. Results: A total of 575 patients with resected IPMNs were identified. Of them, 53.4% had low-grade disease on final pathology. After classifier training and testing, a linear SVM-based model (IPMN-LEARN) was applied on the validation set. It achieved an accuracy of 77.4%, with a positive predictive value of 83%, a specificity of 72%, and a sensitivity of 83% in predicting low-grade disease in patients with IPMN. The model predicted low-grade lesions with an area under the curve of 0.82. Conclusions: A linear SVM learning model can identify low-grade IPMNs with good sensitivity and specificity. It may be used as a complement to existing guidelines to identify patients who could avoid unnecessary surgical resection.

Performance of Prediction Models for Diagnosing Severe Aortic Stenosis Based on Aortic Valve Calcium on Cardiac Computed Tomography: Incorporation of Radiomics and Machine Learning

  • Nam gyu Kang;Young Joo Suh;Kyunghwa Han;Young Jin Kim;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.334-343
    • /
    • 2021
  • Objective: We aimed to develop a prediction model for diagnosing severe aortic stenosis (AS) using computed tomography (CT) radiomics features of aortic valve calcium (AVC) and machine learning (ML) algorithms. Materials and Methods: We retrospectively enrolled 408 patients who underwent cardiac CT between March 2010 and August 2017 and had echocardiographic examinations (240 patients with severe AS on echocardiography [the severe AS group] and 168 patients without severe AS [the non-severe AS group]). Data were divided into a training set (312 patients) and a validation set (96 patients). Using non-contrast-enhanced cardiac CT scans, AVC was segmented, and 128 radiomics features for AVC were extracted. After feature selection was performed with three ML algorithms (least absolute shrinkage and selection operator [LASSO], random forests [RFs], and eXtreme Gradient Boosting [XGBoost]), model classifiers for diagnosing severe AS on echocardiography were developed in combination with three different model classifier methods (logistic regression, RF, and XGBoost). The performance (c-index) of each radiomics prediction model was compared with predictions based on AVC volume and score. Results: The radiomics scores derived from LASSO were significantly different between the severe AS and non-severe AS groups in the validation set (median, 1.563 vs. 0.197, respectively, p < 0.001). A radiomics prediction model based on feature selection by LASSO + model classifier by XGBoost showed the highest c-index of 0.921 (95% confidence interval [CI], 0.869-0.973) in the validation set. Compared to prediction models based on AVC volume and score (c-indexes of 0.894 [95% CI, 0.815-0.948] and 0.899 [95% CI, 0.820-0.951], respectively), eight and three of the nine radiomics prediction models showed higher discrimination abilities for severe AS. However, the differences were not statistically significant (p > 0.05 for all). Conclusion: Models based on the radiomics features of AVC and ML algorithms may perform well for diagnosing severe AS, but the added value compared to AVC volume and score should be investigated further.

A Prediction Model for Complex Diseases using Set Association & Artificial Neural Network (집합 결합과 신경망을 이용한 복합질환의 예측)

  • Choi, Hyun-Joo;Kim, Seung-Hyun;Wee, Kyu-Bum
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.323-330
    • /
    • 2008
  • Since complex diseases are caused by interactions of multiple genes, traditional statistical methods are limited in its power to predict the onset of a complex disease. Recently new approaches using machine learning techniques are introduced. Neural nets are a suitable model to find patterns in complex data. When large amount of data are fed into a neural net, however, it takes a long time for learning and finding patterns. In this study we suggest a new model that combines the set association, which is a statistical technique to find important SNPs associated with complex diseases, and neural network. We experiment with SNP data related to asthma to test the effectiveness of our model. Our model shows higher prediction accuracy and shorter execution time than neural net only. We expect our model can be used effectively to predict the onset of other complex diseases.

Formation of Nearest Neighbors Set Based on Similarity Threshold (유사도 임계치에 근거한 최근접 이웃 집합의 구성)

  • Lee, Jae-Sik;Lee, Jin-Chun
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.2
    • /
    • pp.1-14
    • /
    • 2007
  • Case-based reasoning (CBR) is one of the most widely applied data mining techniques and has proven its effectiveness in various domains. Since CBR is basically based on k-Nearest Neighbors (NN) method, the value of k affects the performance of CBR model directly. Once the value of k is set, it is fixed for the lifetime of the CBR model. However, if the value is set greater or smaller than the optimal value, the performance of CBR model will be deteriorated. In this research, we propose a new method of composing the NN set using similarity scores as themselves, which we shall call s-NN method, rather than using the fixed value of k. In the s-NN method, the different number of nearest neighbors can be selected for each new case. Performance evaluation using the data from UCI Machine Learning Repository shows that the CBR model adopting the s-NN method outperforms the CBR model adopting the traditional k-NN method.

  • PDF

A New Head Pose Estimation Method based on Boosted 3-D PCA (새로운 Boosted 3-D PCA 기반 Head Pose Estimation 방법)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.105-109
    • /
    • 2021
  • In this paper, we evaluate Boosted 3-D PCA as a Dataset and evaluate its performance. After that, we will analyze the network features and performance. In this paper, the learning was performed using the 300W-LP data set using the same learning method as Boosted 3-D PCA, and the evaluation was evaluated using the AFLW2000 data set. The results show that the performance is similar to that of the Boosted 3-D PCA paper. This performance result can be learned using the data set of face images freely than the existing Landmark-to-Pose method, so that the poses can be accurately predicted in real-world situations. Since the optimization of the set of key points is not independent, we confirmed the manual that can reduce the computation time. This analysis is expected to be a very important resource for improving the performance of network boosted 3-D PCA or applying it to various application domains.

The Parallel Corpus Approach to Building the Syntactic Tree Transfer Set in the English-to- Vietnamese Machine Translation

  • Dien Dinh;Ngan Thuy;Quang Xuan;Nam Chi
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.382-386
    • /
    • 2004
  • Recently, with the machine learning trend, most of the machine translation systems on over the world use two syntax tree sets of two relevant languages to learn syntactic tree transfer rules. However, for the English-Vietnamese language pair, this approach is impossible because until now we have not had a Vietnamese syntactic tree set which is correspondent to English one. Building of a very large correspondent Vietnamese syntactic tree set (thousands of trees) requires so much work and take the investment of specialists in linguistics. To take advantage from our available English-Vietnamese Corpus (EVC) which was tagged in word alignment, we choose the SITG (Stochastic Inversion Transduction Grammar) model to construct English- Vietnamese syntactic tree sets automatically. This model is used to parse two languages at the same time and then carry out the syntactic tree transfer. This English-Vietnamese bilingual syntactic tree set is the basic training data to carry out transferring automatically from English syntactic trees to Vietnamese ones by machine learning models. We tested the syntax analysis by comparing over 10,000 sentences in the amount of 500,000 sentences of our English-Vietnamese bilingual corpus and first stage got encouraging result $(analyzed\;about\;80\%)[5].$ We have made use the TBL algorithm (Transformation Based Learning) to carry out automatic transformations from English syntactic trees to Vietnamese ones based on that parallel syntactic tree transfer set[6].

  • PDF

Transfer Learning-Based Vibration Fault Diagnosis for Ball Bearing (전이학습을 이용한 볼베어링의 진동진단)

  • Subin Hong;Youngdae Lee;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.845-850
    • /
    • 2023
  • In this paper, we propose a method for diagnosing ball bearing vibration using transfer learning. STFT, which can analyze vibration signals in time-frequency, was used as input to CNN to diagnose failures. In order to rapidly learn CNN-based deep artificial neural networks and improve diagnostic performance, we proposed a transfer learning-based deep learning learning technique. For transfer learning, the feature extractor and classifier were selectively learned using a VGG-based image classification model, the data set for learning was publicly available ball bearing vibration data provided by Case Western Reserve University, and performance was evaluated by comparing the proposed method with the existing CNN model. Experimental results not only prove that transfer learning is useful for condition diagnosis in ball bearing vibration data, but also allow other industries to use transfer learning to improve condition diagnosis.

Analysis of the Effect of Deep-learning Super-resolution for Fragments Detection Performance Enhancement (파편 탐지 성능 향상을 위한 딥러닝 초해상도화 효과 분석)

  • Yuseok Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.234-245
    • /
    • 2023
  • The Arena Fragmentation Test(AFT) is designed to analyze warhead performance by measuring fragmentation data. In order to evaluate the results of the AFT, a set of AFT images are captured by high-speed cameras. To detect objects in the AFT image set, ResNet-50 based Faster R-CNN is used as a detection model. However, because of the low resolution of the AFT image set, a detection model has shown low performance. To enhance the performance of the detection model, Super-resolution(SR) methods are used to increase the AFT image set resolution. To this end, The Bicubic method and three SR models: ZSSR, EDSR, and SwinIR are used. The use of SR images results in an increase in the performance of the detection model. While the increase in the number of pixels representing a fragment flame in the AFT images improves the Recall performance of the detection model, the number of pixels representing noise also increases, leading to a slight decreases in Precision performance. Consequently, the F1 score is increased by up to 9 %, demonstrating the effectiveness of SR in enhancing the performance of the detection model.

Class Imbalance Resolution Method and Classification Algorithm Suggesting Based on Dataset Type Segmentation (데이터셋 유형 분류를 통한 클래스 불균형 해소 방법 및 분류 알고리즘 추천)

  • Kim, Jeonghun;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.23-43
    • /
    • 2022
  • In order to apply AI (Artificial Intelligence) in various industries, interest in algorithm selection is increasing. Algorithm selection is largely determined by the experience of a data scientist. However, in the case of an inexperienced data scientist, an algorithm is selected through meta-learning based on dataset characteristics. However, since the selection process is a black box, it was not possible to know on what basis the existing algorithm recommendation was derived. Accordingly, this study uses k-means cluster analysis to classify types according to data set characteristics, and to explore suitable classification algorithms and methods for resolving class imbalance. As a result of this study, four types were derived, and an appropriate class imbalance resolution method and classification algorithm were recommended according to the data set type.