References
- J. Y. Dai, I. Ruczinski, M. LeBlanc and C. Kooperberg, “Imputation methods to improve inference in SNP association studies,” Genetic Epidemiology, Vol.30, pp.690-702, 2006 https://doi.org/10.1002/gepi.20180
- D. Bostein, N. Risch, “Discovering genotypes underlying human phenotypes: past success for Mendelian disease, future approaches for complex disease,” Nat. Genet. Suppl. Vol.33, pp.228-237, 2003 https://doi.org/10.1038/ng1090
- 임성빈, “약물유전체학(Phamacogenomics)”, 월드사이언스, 2004
- N. Nagelkerke, J. Smits, S. Le Cessie, H. Van Houwelingen, “Testing goodness-of-fit of the logistic regression model in case-control studies using sample reweighting,” Stat. Med. Vol.24, pp.121-130, 2005 https://doi.org/10.1002/sim.1997
- Y. Tomita, S. Tomida,Y. Hasegawa, Y. Suzuki, T. Shirakawa, T. Kobayashi and H. Homita, “Artificial neural network approach for selection of susceptible single nucleotide polymorphism and construction of prediction model on childhood allergic asthma,” Bioinformatics, Vol.5, pp.120-132, 2004 https://doi.org/10.1186/1471-2105-5-120
- M. D. Ritchie, B. C. White, J. S. Parker, L. W. Hahn and J. H. Moore, “Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human disease,” BMC Bioinformatics, Vol.4, pp.28-42, 2003 https://doi.org/10.1186/1471-2105-4-28
- A. A. Motsinger, S. L. Lee, G. Mellick and M. D. Ritchie, “GPNN: Power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease,” BMC Bioinformatics, Vol.7, pp.39-49, 2006 https://doi.org/10.1186/1471-2105-7-39
- L. W. Hahn, M.D. Ritchie and J. H. Moore, “Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions,” Bioninformatics, Vol.19, No.3, pp.376-382, 2003 https://doi.org/10.1093/bioinformatics/btf869
- J. H. Moore, J. C. Gilbert, C. T. Tsai, F. T. Chiang, T. Holden, N. Barney and B. C. White, “A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of numan disease susceptibility,” J. Theor. Biol. Vol.241, pp.252-261, 2006 https://doi.org/10.1016/j.jtbi.2005.11.036
- J. Hoh, A. Wille and J. Ott, “Trimming, weighting, and grouping SNPs in human case-control association studies,” Genome Res. Vol.11, pp.2115-2119, 2001 https://doi.org/10.1101/gr.204001
- J. Ott and J. Hoh, “Set association analysis of SNP casecontrol and microarray data”, J. Comput. Biol. Vol.10, pp.569-574, 2003 https://doi.org/10.1089/10665270360688192
- K. L. Lunetta, L. B. Hayward, J. Segal and P. Van Eerdewgh, “Screening large-scale association study data: exploiting interactions using random forests,” BMC Genetics, Vol.5, pp. 32-45, 2004 https://doi.org/10.1186/1471-2156-5-32
- A. Bureau, J. Dupuis, K. Falls, K. L. Lunetta, B. Hayward, T. P. Keith and P. Van Eerdewegh, “Identifying SNPs predictive of phenotype using random forests,” Genet. Epidemiol. Vol.28, pp.171-182, 2005 https://doi.org/10.1002/gepi.20041
- A. G. Heidema, J. M. Boer, N. Nagelkerke, E.C. Mariman and D. L. van der A, E. J. Feskens, “The challenge for genetic epidemiologists : how to analyze large numbers of SNPs in relation to complex disease,” BMC Genetics, Vol.7, pp.23-38, 2006 https://doi.org/10.1186/1471-2156-7-23
- S. Kumar, “Neural Networks: A Classroom Approach,” McGraw Hill, 2004
- R. Rojas, “Neural Networks: A Systematic Introduction,” Springer, 1991
- http://sourceforge.net/projects/mdr/