Abstract
Feature Selection is one of methods to improve the classification accuracy of data in the field of machine learning. Many feature selection algorithms have been proposed and discussed for years. However, the problem of finding the optimal feature subset from full data still remains to be a difficult problem. Bio-inspired algorithms are well-known evolutionary algorithms based on the principles of behavior of organisms, and very useful methods to find the optimal solution in optimization problems. Bio-inspired algorithms are also used in the field of feature selection problems. So in this paper we proposed new improved bio-inspired algorithms for feature selection. We used well-known bio-inspired algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), to find the optimal subset of features that shows the best performance in classification accuracy. In addition, we modified the bio-inspired algorithms considering the prior importance (prior relevance) of each feature. We chose the mRMR method, which can measure the goodness of single feature, to set the prior importance of each feature. We modified the evolution operators of GA and PSO by using the prior importance of each feature. We verified the performance of the proposed methods by experiment with datasets. Feature selection methods using GA and PSO produced better performances in terms of the classification accuracy. The modified method with the prior importance demonstrated improved performances in terms of the evolution speed and the classification accuracy.
특징 선택은 기계 학습에서 분류의 성능을 높이기 위해 사용되는 방법이다. 여러 방법들이 개발되고 사용되어 오고 있으나, 전체 데이터에서 최적화된 특징 부분집합을 구성하는 문제는 여전히 어려운 문제로 남아있다. 생태계 모방 알고리즘은 생물체들의 행동 원리 등을 기반으로하여 만들어진 진화적 알고리즘으로, 최적화된 해를 찾는 문제에서 매우 유용하게 사용되는 방법이다. 특징 선택 문제에서도 생태계 모방 알고리즘을 이용한 해결방법들이 제시되어 오고 있으며, 이에 본 논문에서는 생태계 모방 알고리즘을 이용한 특징 선택 방법을 개선하는 방안을 제시한다. 이를 위해 잘 알려진 생태계 모방 알고리즘인 유전자 알고리즘(GA)과 파티클 집단 최적화 알고리즘(PSO)을 이용하여 데이터에서 가장분류 성능이 우수한 특징 부분집합을 만들어 내도록 하고, 최종적으로 개별 특징의 사전 중요도를 설정하여 생태계 모방 알고리즘을 개선하는 방법을 제안하였다. 이를 위해 개별 특징의 우수도를 구할 수 있는 mRMR이라는 방법을 이용하였다. 이렇게 설정한 사전 중요도를 이용하여 GA와 PSO의 진화 연산을 수정하였다. 데이터를 이용한 실험을 통하여 제안한 방법들의 성능을 검증하였다. GA와 PSO를 이용한 특징 선택 방법은 그 분류 정확도에 있어서 뛰어난 성능을 보여주었다. 그리고 최종적으로 제시한 사전 중요도를 이용해 개선된 방법은 그 진화 속도와 분류 정확도 면에서 기존의 GA와 PSO 방법보다 더 나아진 성능을 보여주는 것을 확인하였다.