KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.7
/
pp.3333-3350
/
2019
The smart jammer launches jamming attacks which degrade the transmission reliability. In this paper, smart jamming attacks based on the communication probability over different channels is considered, and an anti-jamming Q learning algorithm (AQLA) is developed to obtain anti-jamming knowledge for the local region. To accelerate the learning process across multiple regions, a multi-regional intelligent anti-jamming learning algorithm (MIALA) which utilizes transferred knowledge from neighboring regions is proposed. The MIALA algorithm is evaluated through simulations, and the results show that the it is capable of learning the jamming rules and effectively speed up the learning rate of the whole communication region when the jamming rules are similar in the neighboring regions.
Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy -neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.
Journal of Electrical Engineering and information Science
/
v.2
no.6
/
pp.191-196
/
1997
Fuzzy clustering has been playing an important role in solving many problems. Fuzzy c-Means(FCM) algorithm is most frequently used for fuzzy clustering. But some fixed point of FCM algorithm, know as Tucker's counter example, is not a reasonable solution. Moreover, FCM algorithm is impossible to perform the on-line learning since it is basically a batch learning scheme. This paper presents unsupervised learning networks as an attempt to improve shortcomings of the conventional clustering algorithm. This model integrates optimization function of FCM algorithm into unsupervised learning networks. The learning rule of the proposed scheme is a result of formal derivation based on the gradient descent procedure of a fuzzy objective function. Using the result of formal derivation, two algorithms of fuzzy cluster analysis, the batch learning version and on-line learning version, are devised. They are tested on several data sets and compared with FCM. The experimental results show that the proposed algorithms find out the reasonable solution on Tucker's counter example.
In software-defined wireless networking (SDWN), the optimal routing technique is one of the effective solutions to improve its performance. This routing technique is done by many different methods, with the most common using integer linear programming problem (ILP), building optimal routing metrics. These methods often only focus on one routing objective, such as minimizing the packet blocking probability, minimizing end-to-end delay (EED), and maximizing network throughput. It is difficult to consider multiple objectives concurrently in a routing algorithm. In this paper, we investigate the application of machine learning to control routing in the SDWN. An intelligent routing algorithm is then proposed based on the machine learning to improve the network performance. The proposed algorithm can optimize multiple routing objectives. Our idea is to combine supervised learning (SL) and reinforcement learning (RL) methods to discover new routes. The SL is used to predict the performance metrics of the links, including EED quality of transmission (QoT), and packet blocking probability (PBP). The routing is done by the RL method. We use the Q-value in the fundamental equation of the RL to store the PBP, which is used for the aim of route selection. Concurrently, the learning rate coefficient is flexibly changed to determine the constraints of routing during learning. These constraints include QoT and EED. Our performance evaluations based on OMNeT++ have shown that the proposed algorithm has significantly improved the network performance in terms of the QoT, EED, packet delivery ratio, and network throughput compared with other well-known routing algorithms.
Sun, Young Ghyu;Hwang, Yu Min;Hong, Seung Gwan;Kim, Jin Young
Journal of Satellite, Information and Communications
/
v.12
no.3
/
pp.69-73
/
2017
In this paper, we developed a real-time image recognition algorithm based on machine learning and tested the performance of the algorithm. The real-time image recognition algorithm recognizes the input image in real-time based on the machine-learned image data. In order to test the performance of the real-time image recognition algorithm, we applied the real-time image recognition algorithm to the autonomous vehicle and showed the performance of the real-time image recognition algorithm through the application of the autonomous vehicle.
A deep learning based real-time painting surface inspection algorithm is proposed herein, designed for developing an autonomous inspection drone. The painting surface inspection is usually conducted manually. However, the manual inspection has a limitation in obtaining accurate data for correct judgement on the surface because of human error and deviation of individual inspection experiences. The best method to replace manual surface inspection is the vision-based inspection method with a camera, using various image processing algorithms. Nevertheless, the visual inspection is difficult to apply to surface inspection due to diverse appearances of material, hue, and lightning effects. To overcome technical limitations, a deep learning-based pattern recognition algorithm is proposed, which is specialized for painting surface inspections. The proposed algorithm functions in real time on the embedded board mounted on an autonomous inspection drone. The inspection results data are stored in the database and used for training the deep learning algorithm to improve performance. The various experiments for pre-inspection of painting processes are performed to verify real-time performance of the proposed deep learning algorithm.
To address the problems of the gravitational search algorithm (GSA) in which the population is prone to converge prematurely and fall into the local solution when solving the single-objective optimization problem, a sine map jumping gravity search algorithm based on asynchronous learning is proposed. First, a learning mechanism is introduced into the GSA. The agents keep learning from the excellent agents of the population while they are evolving, thus maintaining the memory and sharing of evolution information, addressing the algorithm's shortcoming in evolution that particle information depends on the current position information only, improving the diversity of the population, and avoiding premature convergence. Second, the sine function is used to map the change of the particle velocity into the position probability to improve the convergence accuracy. Third, the Levy flight strategy is introduced to prevent particles from falling into the local optimization. Finally, the proposed algorithm and other intelligent algorithms are simulated on 18 benchmark functions. The simulation results show that the proposed algorithm achieved improved the better performance.
For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.
This paper presents a newly developed speed sensorless drive using RLS based on Neural Network Training Algorithm. The proposed algorithm has just the time-varying learning rate, while the wellknown back-propagation algorithm based on gradient descent has a constant learning rate. The number of iterations required by the new algorithm to converge is less than that of the back-propagation algorithm. The theoretical analysis and experimental results to verify the effectiveness of the proposed control strategy are described.
Journal of The Korean Association of Information Education
/
v.13
no.2
/
pp.225-236
/
2009
According to the revised guideline for information & communication technology, algorithm has to be dealt with the learning contents from elementary school, so now it needs to study various educational methods for students to learn algorithm easily and effectively. In this study, after selecting sort algorithms as the content of learning, which is recognized as an important part of algorithm, an playing activity-based algorithm teaching method and an animation-based algorithm learning and teaching method were applied for the lower graders of an elementary school. Sorting algorithm education is adopted in two different ways, then we got two conclusions after analyzing the results of a specially designed achievement test and the questionnaire. First, there were not great differences in both educational methods in academic achievement, but it was clear that the lower grade elementary students can learn algorithm with ease. Second, the playing activity-centered algorithm education is more effective than animation-based education in improving students' comprehension, interest and satisfaction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.