• Title/Summary/Keyword: Learning based algorithm

Search Result 3,009, Processing Time 0.031 seconds

Multi-regional Anti-jamming Communication Scheme Based on Transfer Learning and Q Learning

  • Han, Chen;Niu, Yingtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3333-3350
    • /
    • 2019
  • The smart jammer launches jamming attacks which degrade the transmission reliability. In this paper, smart jamming attacks based on the communication probability over different channels is considered, and an anti-jamming Q learning algorithm (AQLA) is developed to obtain anti-jamming knowledge for the local region. To accelerate the learning process across multiple regions, a multi-regional intelligent anti-jamming learning algorithm (MIALA) which utilizes transferred knowledge from neighboring regions is proposed. The MIALA algorithm is evaluated through simulations, and the results show that the it is capable of learning the jamming rules and effectively speed up the learning rate of the whole communication region when the jamming rules are similar in the neighboring regions.

Optimal Control of Induction Motor Using Immune Algorithm Based Fuzzy Neural Network

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1296-1301
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy -neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

Cluster Analysis Algorithms Based on the Gradient Descent Procedure of a Fuzzy Objective Function

  • Rhee, Hyun-Sook;Oh, Kyung-Whan
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.191-196
    • /
    • 1997
  • Fuzzy clustering has been playing an important role in solving many problems. Fuzzy c-Means(FCM) algorithm is most frequently used for fuzzy clustering. But some fixed point of FCM algorithm, know as Tucker's counter example, is not a reasonable solution. Moreover, FCM algorithm is impossible to perform the on-line learning since it is basically a batch learning scheme. This paper presents unsupervised learning networks as an attempt to improve shortcomings of the conventional clustering algorithm. This model integrates optimization function of FCM algorithm into unsupervised learning networks. The learning rule of the proposed scheme is a result of formal derivation based on the gradient descent procedure of a fuzzy objective function. Using the result of formal derivation, two algorithms of fuzzy cluster analysis, the batch learning version and on-line learning version, are devised. They are tested on several data sets and compared with FCM. The experimental results show that the proposed algorithms find out the reasonable solution on Tucker's counter example.

  • PDF

IRSML: An intelligent routing algorithm based on machine learning in software defined wireless networking

  • Duong, Thuy-Van T.;Binh, Le Huu
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.733-745
    • /
    • 2022
  • In software-defined wireless networking (SDWN), the optimal routing technique is one of the effective solutions to improve its performance. This routing technique is done by many different methods, with the most common using integer linear programming problem (ILP), building optimal routing metrics. These methods often only focus on one routing objective, such as minimizing the packet blocking probability, minimizing end-to-end delay (EED), and maximizing network throughput. It is difficult to consider multiple objectives concurrently in a routing algorithm. In this paper, we investigate the application of machine learning to control routing in the SDWN. An intelligent routing algorithm is then proposed based on the machine learning to improve the network performance. The proposed algorithm can optimize multiple routing objectives. Our idea is to combine supervised learning (SL) and reinforcement learning (RL) methods to discover new routes. The SL is used to predict the performance metrics of the links, including EED quality of transmission (QoT), and packet blocking probability (PBP). The routing is done by the RL method. We use the Q-value in the fundamental equation of the RL to store the PBP, which is used for the aim of route selection. Concurrently, the learning rate coefficient is flexibly changed to determine the constraints of routing during learning. These constraints include QoT and EED. Our performance evaluations based on OMNeT++ have shown that the proposed algorithm has significantly improved the network performance in terms of the QoT, EED, packet delivery ratio, and network throughput compared with other well-known routing algorithms.

Performance of Real-time Image Recognition Algorithm Based on Machine Learning (기계학습 기반의 실시간 이미지 인식 알고리즘의 성능)

  • Sun, Young Ghyu;Hwang, Yu Min;Hong, Seung Gwan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.69-73
    • /
    • 2017
  • In this paper, we developed a real-time image recognition algorithm based on machine learning and tested the performance of the algorithm. The real-time image recognition algorithm recognizes the input image in real-time based on the machine-learned image data. In order to test the performance of the real-time image recognition algorithm, we applied the real-time image recognition algorithm to the autonomous vehicle and showed the performance of the real-time image recognition algorithm through the application of the autonomous vehicle.

Deep Learning Based Real-Time Painting Surface Inspection Algorithm for Autonomous Inspection Drone

  • Chang, Hyung-young;Han, Seung-ryong;Lim, Heon-young
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.253-257
    • /
    • 2019
  • A deep learning based real-time painting surface inspection algorithm is proposed herein, designed for developing an autonomous inspection drone. The painting surface inspection is usually conducted manually. However, the manual inspection has a limitation in obtaining accurate data for correct judgement on the surface because of human error and deviation of individual inspection experiences. The best method to replace manual surface inspection is the vision-based inspection method with a camera, using various image processing algorithms. Nevertheless, the visual inspection is difficult to apply to surface inspection due to diverse appearances of material, hue, and lightning effects. To overcome technical limitations, a deep learning-based pattern recognition algorithm is proposed, which is specialized for painting surface inspections. The proposed algorithm functions in real time on the embedded board mounted on an autonomous inspection drone. The inspection results data are stored in the database and used for training the deep learning algorithm to improve performance. The various experiments for pre-inspection of painting processes are performed to verify real-time performance of the proposed deep learning algorithm.

Sinusoidal Map Jumping Gravity Search Algorithm Based on Asynchronous Learning

  • Zhou, Xinxin;Zhu, Guangwei
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.332-343
    • /
    • 2022
  • To address the problems of the gravitational search algorithm (GSA) in which the population is prone to converge prematurely and fall into the local solution when solving the single-objective optimization problem, a sine map jumping gravity search algorithm based on asynchronous learning is proposed. First, a learning mechanism is introduced into the GSA. The agents keep learning from the excellent agents of the population while they are evolving, thus maintaining the memory and sharing of evolution information, addressing the algorithm's shortcoming in evolution that particle information depends on the current position information only, improving the diversity of the population, and avoiding premature convergence. Second, the sine function is used to map the change of the particle velocity into the position probability to improve the convergence accuracy. Third, the Levy flight strategy is introduced to prevent particles from falling into the local optimization. Finally, the proposed algorithm and other intelligent algorithms are simulated on 18 benchmark functions. The simulation results show that the proposed algorithm achieved improved the better performance.

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

Implementation of Speed Sensorless Induction Motor drives by Fast Learning Neural Network using RLS Approach

  • Kim, Yoon-Ho;Kook, Yoon-Sang
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.293-297
    • /
    • 1998
  • This paper presents a newly developed speed sensorless drive using RLS based on Neural Network Training Algorithm. The proposed algorithm has just the time-varying learning rate, while the wellknown back-propagation algorithm based on gradient descent has a constant learning rate. The number of iterations required by the new algorithm to converge is less than that of the back-propagation algorithm. The theoretical analysis and experimental results to verify the effectiveness of the proposed control strategy are described.

  • PDF

A Comparison of Teaching and Learning Method of Sorting Algorithm based on the Playing Activity and Animation (놀이 활동 중심과 애니메이션 기반의 정렬 알고리즘 교수-학습 방법 비교)

  • Lee, Yong-Bae;Lee, Yeong-Mi
    • Journal of The Korean Association of Information Education
    • /
    • v.13 no.2
    • /
    • pp.225-236
    • /
    • 2009
  • According to the revised guideline for information & communication technology, algorithm has to be dealt with the learning contents from elementary school, so now it needs to study various educational methods for students to learn algorithm easily and effectively. In this study, after selecting sort algorithms as the content of learning, which is recognized as an important part of algorithm, an playing activity-based algorithm teaching method and an animation-based algorithm learning and teaching method were applied for the lower graders of an elementary school. Sorting algorithm education is adopted in two different ways, then we got two conclusions after analyzing the results of a specially designed achievement test and the questionnaire. First, there were not great differences in both educational methods in academic achievement, but it was clear that the lower grade elementary students can learn algorithm with ease. Second, the playing activity-centered algorithm education is more effective than animation-based education in improving students' comprehension, interest and satisfaction.

  • PDF