• 제목/요약/키워드: Learning Support Function

검색결과 200건 처리시간 0.022초

Complex Neural Classifiers for Power Quality Data Mining

  • Vidhya, S.;Kamaraj, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1715-1723
    • /
    • 2018
  • This work investigates the performance of fully complex- valued radial basis function network(FC-RBF) and complex extreme learning machine (CELM) based neural approaches for classification of power quality disturbances. This work engages the use of S-Transform to extract the features relating to single and combined power quality disturbances. The performance of the classifiers are compared with their real valued counterparts namely extreme learning machine(ELM) and support vector machine(SVM) in terms of convergence and classification ability. The results signify the suitability of complex valued classifiers for power quality disturbance classification.

GPS 재밍탐지를 위한 기계학습 적용 및 성능 분석 (Application and Performance Analysis of Machine Learning for GPS Jamming Detection)

  • 정인환
    • 한국정보기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.47-55
    • /
    • 2019
  • 최근 GPS 재밍으로 인한 피해가 증가되면서 GPS 재밍을 탐지하고 대비하기 위한 연구가 활발히 진행되고 있다. 본 논문은 다중 GPS 수신채널과 3가지 기계학습을 이용한 GPS 재밍 탐지 방법을 다루고 있다. 제안된 다중 GPS 채널은 항재밍 기능이 없는 상용 GPS 수신기와 항잡음 재밍능력만 있는 수신기, 항잡음/항기만 재밍능력이 있는 수신기로 구성되고 운용자는 각각의 수신기에 수신된 좌표를 비교하여 재밍신호의 특성을 식별할 수 있다. 본 논문에서는 신호특성이 다른 각각의 5개 재밍신호를 입력하고, 3가지 기계학습방법(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree)을 이용하여 재밍탐지 시험을 수행하였다. 시험 결과 머신러닝 기법을 단독으로 사용하였을 때 DT 기법이 96.9% 탐지율로 가장 우수한 성능을 보였으며 이진분류기 기법에 비해 모호성 낮고 하드웨어가 단순하여 GPS 재밍탐지에 효과적임을 확인하였다. 또한, 모호성을 해결해주는 추가기법을 적용할 경우 SVM 기법을 활용할 수 있음을 확인하였다.

Support Vector Machine에 대한 커널 함수의 성능 분석 (Performance Analysis of Kernel Function for Support Vector Machine)

  • 심우성;성세영;정차근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.405-407
    • /
    • 2009
  • SVM(Support Vector Machine) is a classification method which is recently watched in mechanical learning system. Vapnik, Osuna, Platt etc. had suggested methodology in order to solve needed QP(Quadratic Programming) to realize SVM so that have extended application field. SVM find hyperplane which classify into 2 class by converting from input space converter vector to characteristic space vector using Kernel Function. This is very systematic and theoretical more than neural network which is experiential study method. Although SVM has superior generalization characteristic, it depends on Kernel Function. There are three category in the Kernel Function as Polynomial Kernel, RBF(Radial Basis Function) Kernel, Sigmoid Kernel. This paper has analyzed performance of SVM against kernel using virtual data.

  • PDF

Multi-Radial Basis Function SVM Classifier: Design and Analysis

  • Wang, Zheng;Yang, Cheng;Oh, Sung-Kwun;Fu, Zunwei
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2511-2520
    • /
    • 2018
  • In this study, Multi-Radial Basis Function Support Vector Machine (Multi-RBF SVM) classifier is introduced based on a composite kernel function. In the proposed multi-RBF support vector machine classifier, the input space is divided into several local subsets considered for extremely nonlinear classification tasks. Each local subset is expressed as nonlinear classification subspace and mapped into feature space by using kernel function. The composite kernel function employs the dual RBF structure. By capturing the nonlinear distribution knowledge of local subsets, the training data is mapped into higher feature space, then Multi-SVM classifier is realized by using the composite kernel function through optimization procedure similar to conventional SVM classifier. The original training data set is partitioned by using some unsupervised learning methods such as clustering methods. In this study, three types of clustering method are considered such as Affinity propagation (AP), Hard C-Mean (HCM) and Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA). Experimental results on benchmark machine learning datasets show that the proposed method improves the classification performance efficiently.

An Example-Based Engligh Learing Environment for Writing

  • Miyoshi, Yasuo;Ochi, Youji;Okamoto, Ryo;Yano, Yoneo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.292-297
    • /
    • 2001
  • In writing learning as a second/foreign language, a learner has to acquire not only lexical and syntactical knowledge but also the skills to choose suitable words for content which s/he is interested in. A learning system should extrapolate learner\\`s intention and give example phrases that concern with the content in order to support this on the system. However, a learner cannot always represent a content of his/her desired phrase as inputs to the system. Therefore, the system should be equipped with a diagnosis function for learner\\`s intention. Additionally, a system also should be equipped with an analysis function to score similarity between learner\\`s intention and phrases which is stored in the system on both syntactic and idiomatic level in order to present appropriate example phrases to a learner. In this paper, we propose architecture of an interactive support method for English writing learning which is based an analogical search technique of sample phrases from corpora. Our system can show a candidate of variation/next phrases to write and an analogous sentence that a learner wants to represents from corpora.

  • PDF

모바일 탐구학습 지원도구의 개발과 적용 (The Development and Its Application of the Mobile Learning Support Device for the Inquiry Learning)

  • 유상미;신승용;김미량
    • 컴퓨터교육학회논문지
    • /
    • 제12권5호
    • /
    • pp.35-47
    • /
    • 2009
  • 유비쿼터스(Uniquitous)기술 기반의 U-learning 학습과 관련한 몇몇 연구에서 지적하는 것처럼 학습자의 상황성과 맥락성은 반드시 반영될 필요가 있다. 이를 위해 본 연구에서는 탐구학습 방법과 모바일 탐구학습 지원도구를 제안했다. 탐구학습은 학습자가 스스로 실제 현장에서 경험한 내용을 기초로 운영되므로 학습자를 자연스럽게 학습 상황과 맥락속에 위치하게 해 줄 수 있다. 본 연구에서는 교육과정의 일부를 탐구학습의 형태에 맞게 변형하여 적용했으며, 또한 연구에서 개발한 모바일 탐구학습 지원도구는 학습자가 탐구학습의 과정을 자연스럽게 밟아 갈 수 있도록 하는 가이드 기능과, 모바일 기술을 바탕으로 습득한 자료를 원격지 학습서버에 저장하여 재사용할 수 있도록 하여 학생들이 수행하는 탐구학습을 지원하였다. 이들은 학교현장에 적용되었고, 결과적으로 학생들의 학습 흥미와 학업성취도는 통계적으로 유의미한 범위에서 향상된 결과를 나타냈다.

  • PDF

Transductive SVM을 위한 분지-한계 알고리즘 (A Branch-and-Bound Algorithm for Finding an Optimal Solution of Transductive Support Vector Machines)

  • 박찬규
    • 한국경영과학회지
    • /
    • 제31권2호
    • /
    • pp.69-85
    • /
    • 2006
  • Transductive Support Vector Machine(TSVM) is one of semi-supervised learning algorithms which exploit the domain structure of the whole data by considering labeled and unlabeled data together. Although it was proposed several years ago, there has been no efficient algorithm which can handle problems with more than hundreds of training examples. In this paper, we propose an efficient branch-and-bound algorithm which can solve large-scale TSVM problems with thousands of training examples. The proposed algorithm uses two bounding techniques: min-cut bound and reduced SVM bound. The min-cut bound is derived from a capacitated graph whose cuts represent a lower bound to the optimal objective function value of the dual problem. The reduced SVM bound is obtained by constructing the SVM problem with only labeled data. Experimental results show that the accuracy rate of TSVM can be significantly improved by learning from the optimal solution of TSVM, rather than an approximated solution.

함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘 (Kernel Adatron Algorithm of Support Vector Machine for Function Approximation)

  • 석경하;황창하
    • 한국정보처리학회논문지
    • /
    • 제7권6호
    • /
    • pp.1867-1873
    • /
    • 2000
  • 함수근사는 과학과 고학부야에서 공범위하게 응용된다. 시포트 벡터 기계(support vector machine, SVM)는 원래 분류를 위해 계안되어져 문자인식, 얼굴인식 등의 응용분야에서 좋은 결과를 보여주고 있다. 최근 SVM이론 함수근사로 확장되어 많이 활용되려 하고 있다. 그러나 함수근사를 위한 SVM 알고리즘은 QP(quadratic proramming)문제와 관련되어있어 계산에 시간이 걸리며 QP를 위한 패키지가 있어야 한다. 본 논문에서는 함수근사를 위해 커널-애더트론 알고리즘을 이용한 SVM을 제안하고 QP를 이용한 SVM과 성능을 비교하고자 한다.

  • PDF

회귀용 Support Vector Machine의 성능개선을 위한 조합형 학습알고리즘 (Hybrid Learning Algorithm for Improving Performance of Regression Support Vector Machine)

  • 조용현;박창환;박용수
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.477-484
    • /
    • 2001
  • 본 논문에서는 회귀용 support vector machine의 성능 개선을 위한 모멘텀과 kernel-adatron 기법이 조합형 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 supper vector machine의 학습기법인 기술기상승법에 발생하는 최적해로의 수렴에 따란 발진을 억제하여 그수렴속도를 좀 더 개선시키는 모멘텀의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 갖는 kernel-adatorn 알고리즘의 장점을 그대로 살린 것이다. 제안된 알고리즘의 support vector machine을 1차원과 2차원 비선형 함수 회귀에 적용하여 시뮬레이션한 결과, 학습속도에 있어서 2차 프로그래밍과 기존의 kernel-adaton 알고리즘보다 더 우수하고, 회귀성능면에서도 우수한 성능이 있음을 확인하였다.

  • PDF

Semisupervised support vector quantile regression

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.517-524
    • /
    • 2015
  • Unlabeled examples are easier and less expensive to be obtained than labeled examples. In this paper semisupervised approach is used to utilize such examples in an effort to enhance the predictive performance of nonlinear quantile regression problems. We propose a semisupervised quantile regression method named semisupervised support vector quantile regression, which is based on support vector machine. A generalized approximate cross validation method is used to choose the hyper-parameters that affect the performance of estimator. The experimental results confirm the successful performance of the proposed S2SVQR.