• Title/Summary/Keyword: Learning Parameter

Search Result 681, Processing Time 0.023 seconds

A Study on the traffic flow prediction through Catboost algorithm (Catboost 알고리즘을 통한 교통흐름 예측에 관한 연구)

  • Cheon, Min Jong;Choi, Hye Jin;Park, Ji Woong;Choi, HaYoung;Lee, Dong Hee;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.58-64
    • /
    • 2021
  • As the number of registered vehicles increases, traffic congestion will worsen worse, which may act as an inhibitory factor for urban social and economic development. Through accurate traffic flow prediction, various AI techniques have been used to prevent traffic congestion. This paper uses the data from a VDS (Vehicle Detection System) as input variables. This study predicted traffic flow in five levels (free flow, somewhat delayed, delayed, somewhat congested, and congested), rather than predicting traffic flow in two levels (free flow and congested). The Catboost model, which is a machine-learning algorithm, was used in this study. This model predicts traffic flow in five levels and compares and analyzes the accuracy of the prediction with other algorithms. In addition, the preprocessed model that went through RandomizedSerachCv and One-Hot Encoding was compared with the naive one. As a result, the Catboost model without any hyper-parameter showed the highest accuracy of 93%. Overall, the Catboost model analyzes and predicts a large number of categorical traffic data better than any other machine learning and deep learning models, and the initial set parameters are optimized for Catboost.

An Educational Case Study of Image Recognition Principle in Artificial Neural Networks for Teacher Educations (교사교육을 위한 인공신경망 이미지인식원리 교육사례연구)

  • Hur, Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.791-801
    • /
    • 2021
  • In this paper, an educational case that can be applied as artificial intelligence literacy education for preservice teachers and incumbent teachers was studied. To this end, a case of educating the operating principle of an artificial neural network that recognizes images is proposed. This training case focuses on the basic principles of artificial neural network operation and implementation, and applies the method of finding parameter optimization solutions required for artificial neural network implementation in a spreadsheet. In this paper, we focused on the artificial neural network of supervised learning method. First, as an artificial neural network principle education case, an artificial neural network education case for recognizing two types of images was proposed. Second, as an artificial neural network extension education case, an artificial neural network education case for recognizing three types of images was proposed. Finally, the results of analyzing artificial neural network training cases and training satisfaction analysis results are presented. Through the proposed training case, it is possible to learn about the operation principle of artificial neural networks, the method of writing training data, the number of parameter calculations executed according to the amount of training data, and parameter optimization. The results of the education satisfaction survey for preservice teachers and incumbent teachers showed a positive response result of over 70% for each survey item, indicating high class application suitability.

Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models

  • Ozcan, Giyasettin;Kocak, Yilmaz;Gulbandilar, Eyyup
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.275-282
    • /
    • 2017
  • The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.

A sampling design for e-learning industry status survey on the business demand sector (이러닝수요부문 사업체실태조사를 위한 표본설계)

  • Kim, Hea-Jung;Kwak, Hwa-Ryun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.701-712
    • /
    • 2013
  • The e-learning industry status survey statistic provides information about the actual conditions of supply and demand of the e-learning industries. NIPA (National IT Industry Promotion Agency) has published the annual report of the survey results since 2004. Due to the 9th version of the KSIC (Korean standard industrial classification) revised in 2008, a refinement of the sampling design for the survey becomes necessary, especially that for the business demand sector. This article, based on the 9th revision of the KSIC, constructs a stratification of the target population used for the e-learning industry status survey on the business demand sector. Classification of strata in the business population is based on the industrial type and employment scale of business. Under the stratified population, we design a sampling scheme by using the power allocation method that enables us to satisfy a target coefficient of variation of each industrial stratum. In order to secure an accurate survey results based on the proposed sampling design, we consider the problem of calculating the design weights, derivation of parameter estimators, and formulas of their standard errors.

The methods to improve the performance of predictive model using machine learning for the quality properties of products (머신러닝을 활용한 제품 특성 예측모델의 성능향상 방법 연구)

  • Kim, Jong Hoon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.749-756
    • /
    • 2021
  • Thanks to PLC and IoT Sensor, huge amounts of data has been accumulated onto the companies' databases. Machine Learning Algorithms for the predictive model with good performance have been widely utilized in the manufacturing process. We present how to improve the performance of machine learning predictive models. To improve the performance of the predictive model, typical techniques such as increasing the sample size, optimizing the hyper parameters for the algorithm, and selecting a proper machine learning algorithm for the predictive model would be shown. We suggest some new ways to make the model performance much better. With the proposed methods, we can build a better predictive model for predicting and controlling product qualities and save incredibly large amount of quality failure cost.

A Study on Peak Load Prediction Using TCN Deep Learning Model (TCN 딥러닝 모델을 이용한 최대전력 예측에 관한 연구)

  • Lee Jung Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.251-258
    • /
    • 2023
  • It is necessary to predict peak load accurately in order to supply electric power and operate the power system stably. Especially, it is more important to predict peak load accurately in winter and summer because peak load is higher than other seasons. If peak load is predicted to be higher than actual peak load, the start-up costs of power plants would increase. It causes economic loss to the company. On the other hand, if the peak load is predicted to be lower than the actual peak load, blackout may occur due to a lack of power plants capable of generating electricity. Economic losses and blackouts can be prevented by minimizing the prediction error of the peak load. In this paper, the latest deep learning model such as TCN is used to minimize the prediction error of peak load. Even if the same deep learning model is used, there is a difference in performance depending on the hyper-parameters. So, I propose methods for optimizing hyper-parameters of TCN for predicting the peak load. Data from 2006 to 2021 were input into the model and trained, and prediction error was tested using data in 2022. It was confirmed that the performance of the deep learning model optimized by the methods proposed in this study is superior to other deep learning models.

Servo control of mobile robot using vision system (비젼시스템을 이용한 이동로봇의 서보제어)

  • 백승민;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.540-543
    • /
    • 1997
  • In this paper, a precise trajectory tracking method for mobile robot using a vision system is presented. In solving the problem of precise trajectory tracking, a hierarchical control structure is used which is composed of the path planer, vision system, and dynamic controller. When designing the dynamic controller, non-ideal conditions such as parameter variation, frictional force, and external disturbance are considered. The proposed controller can learn bounded control input for repetitive or periodic dynamics compensation which provides robust and adaptive learning capability. Moreover, the usage of vision system makes mobile robot compensate the cumulative location error which exists when relative sensor like encoder is used to locate the position of mobile robot. The effectiveness of the proposed control scheme is shown through computer simulation.

  • PDF

A Design and Implementation of the Question Selection Component considering Item Attribute (문항 특성을 고려한 문제 추출 컴포넌트 설계 및 구현)

  • Jeong, Hwa-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.3
    • /
    • pp.65-73
    • /
    • 2003
  • Most web-based learning is furnishing single side and consistent training resource to learner. Research was gone to apply item analysis method or to introduce web-based learning system using studying pattern. But, we need complicated algorithm or parameter setting etc, for apply these method. Therefore, in this research, we design and implement an item selection system in consideration of learner's incorrectness rate and problem frequency selection rate about question of item selection attribute. Also, as that embody business logic about item selection by EJB, efficient system development is available and we improved maintenance and reusability.

  • PDF

Self-Organizing Fuzzy Systems with Rule Pruning (규칙 제거 기능이 있는 자기구성 퍼지 시스템)

  • Lee, Chang-Wook;Lee, Pyeong-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • In this paper a self-organizing fuzzy system with rule pruning is proposed. A conventional self-organizing fuzzy system having only rule generation has a drawback in generating many slightly different rules from the existing rules which results in increased computation time and slowly learning. The proposed self-organizing fuzzy system generates fuzzy rules based on input-output data and prunes redundant rules which are caused by parameter training. The proposed system has a simple structure but performs almost equivalent function to the conventional self-organizing fuzzy system. Also, this system has better learning speed than the conventional system. Simulation results on several numerical examples demonstrate the performance of the proposed system.

  • PDF

Stable Wavelet Based Fuzzy Neural Network for the Identification of Nonlinear Systems (비선형 시스템의 동정을 위한 안정한 웨이블릿 기반 퍼지 뉴럴 네트워크)

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2681-2683
    • /
    • 2005
  • In this paper, we present the structure of fuzzy neural network(FNN) based on wavelet function, and apply this network structure to the identification of nonlinear systems. For adjusting the shape of membership function and the connection weights, the parameter learning method based on the gradient descent scheme is adopted. And an approach that uses adaptive learning rates is driven via a Lyapunov stability analysis to guarantee the fast convergence. Finally, to verify the efficiency of our network structure. we compare the Identification performance of proposed wavelet based fuzzy neural network(WFNN) with those of the FNN, the wavelet fuzzy model(WFM) and the wavelet neural network(WNN) through the computer simulation.

  • PDF