• Title/Summary/Keyword: Learning Parameter

Search Result 681, Processing Time 0.023 seconds

Parameter Estimation of 2-DOF System Based on Unscented Kalman Filter (UKF 기반 2-자유도 진자 시스템의 파라미터 추정)

  • Seung, Ji-Hoon;Kim, Tae-Yeong;Atiya, Amir;Parlos, Alexander;Chong, Kil-To
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1128-1136
    • /
    • 2012
  • In this paper, the states and parameters in a dynamic system are estimated by applying an Unscented Kalman Filter (UKF). The UKF is widely used in various fields such as sensor fusion, trajectory estimation, and learning of Neural Network weights. These estimations are necessary and important in determining the stability of a mobile system, monitoring, and predictions. However, conventional approaches are difficult to estimate based on the experimental data, due to properties of non-linearity and measurement noises. Therefore, in this paper, UKF is applied in estimating the states and parameters needed. An experimental dynamic system has been set up for obtaining data and the experimental data is collected for parameter estimation. The measurement noises are primarily reduced by applying the Low Pass Filter (LPF). Given the simulation results, the estimated error rate is 39 percent more efficient than the results obtained using the Least Square Method (LSM). Secondly, the estimated parameters have an average convergence period of four seconds.

Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model

  • Shirgir, Sina;Azar, Bahman Farahmand;Hadidi, Ali
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.493-506
    • /
    • 2020
  • In this paper, a new opposition based charged system search (CSS) is proposed to be used as a parameter identification of highly nonlinear semi-active magneto-rheological damper. By replacing the opposition particles with current solutions, the mentioned strategy is used to enhance the search space and to increase the exploration of CSS. To investigate the effectiveness of the proposed method, a nonlinear modified Bouc-Wen model of MR damper is considered to find its parameters, and compare it with those achieved from experimental model of MR damper. Also, by exploiting the sensitivity analysis and using the importance vector, the less importance parameters in the Bouc-Wen model are eliminated which makes the MR damper model simpler. Results demonstrate the new proposed algorithm (OBLCSS) has a high ability to tackle highly nonlinear problems. Based on the results of the α importance vector, a simplified model is proposed and its parameters are identified by using the presented OBLCSS algorithm. The simplified proposed model also has a high capability of estimating damper responses.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using a Deep Neural Network (딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법)

  • Khan, Asad;Ko, Young-Hwi;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.

Strategy to coordinate actions through a plant parameter prediction model during startup operation of a nuclear power plant

  • Jae Min Kim;Junyong Bae;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.839-849
    • /
    • 2023
  • The development of automation technology to reduce human error by minimizing human intervention is accelerating with artificial intelligence and big data processing technology, even in the nuclear field. Among nuclear power plant operation modes, the startup and shutdown operations are still performed manually and thus have the potential for human error. As part of the development of an autonomous operation system for startup operation, this paper proposes an action coordinating strategy to obtain the optimal actions. The lower level of the system consists of operating blocks that are created by analyzing the operation tasks to achieve local goals through soft actor-critic algorithms. However, when multiple agents try to perform conflicting actions, a method is needed to coordinate them, and for this, an action coordination strategy was developed in this work as the upper level of the system. Three quantification methods were compared and evaluated based on the future plant state predicted by plant parameter prediction models using long short-term memory networks. Results confirmed that the optimal action to satisfy the limiting conditions for operation can be selected by coordinating the action sets. It is expected that this methodology can be generalized through future research.

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

Tool Breakage Detection in Face Milling Using a Self Organized Neural Network (자기구성 신경회로망을 이용한 면삭밀링에서의 공구파단검출)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1939-1951
    • /
    • 1994
  • This study introduces a new tool breakage detecting technology comprised of an unsupervised neural network combined with adaptive time series autoregressive(AR) model where parameters are estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(Recursive Least Square). Experiment indicates that AR parameters are good features for tool breakage, therefore it can be detected by tracking the evolution of the AR parameters during milling process. an ART 2(Adaptive Resonance Theory 2) neural network is used for clustering of tool states using these parameters and the network is capable of self organizing without supervised learning. This system operates successfully under the wide range of cutting conditions without a priori knowledge of the process, with fast monitoring time.

Distributed Estimation Using Non-regular Quantized Data

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • We consider a distributed estimation where many nodes remotely placed at known locations collect the measurements of the parameter of interest, quantize these measurements, and transmit the quantized data to a fusion node; this fusion node performs the parameter estimation. Noting that quantizers at nodes should operate in a non-regular framework where multiple codewords or quantization partitions can be mapped from a single measurement to improve the system performance, we propose a low-weight estimation algorithm that finds the most feasible combination of codewords. This combination is found by computing the weighted sum of the possible combinations whose weights are obtained by counting their occurrence in a learning process. Otherwise, tremendous complexity will be inevitable due to multiple codewords or partitions interpreted from non-regular quantized data. We conduct extensive experiments to demonstrate that the proposed algorithm provides a statistically significant performance gain with low complexity as compared to typical estimation techniques.

A Study on Optimization of Neuro-fuzzy System Parameter using Taguchi Method (다구찌 방법을 이용한 뉴로퍼지 시스템 파라미터의 최적화)

  • 김수영;신성철;고창두
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.69-73
    • /
    • 2003
  • Neuro-Fuzzy System is to combine merits of fuzzy inference system and neural networks. The neuro-fuzzy system applies a information about given input-output data to fuzzy theories and deals these fuzzy values with neural networks, e.g. first, redefines normalized input-output data as membership functions and then executes thses fuzzy information with backpropagation neural networks. This paper describes an innovative application of the Taguchi method for the determination of these parameters to meet the training speed and accuracy requirements. Results drawn from this research show that the Taguchi method provides an effective means to enhance the performance of the neuro-fuzzy system in terms of the speed for learning and the accuracy for recall.

Parameter Estimation of Recurrent Neural Equalizers Using the Derivative-Free Kalman Filter

  • Kwon, Oh-Shin
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.267-272
    • /
    • 2010
  • For the last decade, recurrent neural networks (RNNs) have been commonly applied to communications channel equalization. The major problems of gradient-based learning techniques, employed to train recurrent neural networks are slow convergence rates and long training sequences. In high-speed communications system, short training symbols and fast convergence speed are essentially required. In this paper, the derivative-free Kalman filter, so called the unscented Kalman filter (UKF), for training a fully connected RNN is presented in a state-space formulation of the system. The main features of the proposed recurrent neural equalizer are fast convergence speed and good performance using relatively short training symbols without the derivative computation. Through experiments of nonlinear channel equalization, the performance of the RNN with a derivative-free Kalman filter is evaluated.