References
- Azar, B.F., Rahbari, N.M. and Talatahari, S. (2011), "Seismic mitigation of tall buildings using Magneto-rheological dampers", Asian J. Civil Eng. (Build. Housing), 12(5), 637-649.
- Azar, B.F., Hadidi, A. and Rafiee, A. (2015), "An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions", Struct. Eng. Mech., 55(5), 979-999. https://doi.org/10.12989/sem.2015.55.5.979.
- Azar, B.F., Veladi, H., Talatahari, S. and Raeesi. F. (2020), "Optimal design of magnetorheological damper based on tuning Bouc-Wen model parameters using hybrid algorithms", KSCE J. Civil Eng., 24(3), 867-878. https://doi.org/10.1007/s12205-020-0988-z.
- Back, T. and Schwefel, H.P. (1993), "An overview of evolutionary algorithms for parameter optimization", Evolut. Comput., 1(1), 1-23. https://doi.org/10.1162/evco.1993.1.1.1.
- Bai, X.-X., Cai, F.-L. and Chen, P. (2019), "Resistor-capacitor (RC) operator-based hysteresis model for magneto-rheological (MR) dampers", Mech. Syst. Signal Proc., 117, 157-169. https://doi.org/10.1016/j.ymssp.2018.07.050.
- Bouc, R. (1967), "Forced vibration of mechanical systems with hysteresis", Proceedings of the 4th Conference on Nonlinear Oscillation, Prague, September.
- Charalampakis, A.E. and Koumousis, V.K. (2008), "Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm", J. Sound Vib., 314, 571-585. https://doi.org/10.1016/j.jsv.2008.01.018.
- Charalampakis, A.E. and Dimou, C.K. (2010), "Identification of Bouc-Wen hysteretic systems using particle swarm optimization", Comput. Struct., 88, 1197-1205. https://doi.org/10.1016/j.compstruc.2010.06.009.
- Choi, S.B., Lee, H.S. and Park, Y.P. (2001), "A hysteresis model for the field-dependent damping force of a magneto-rheological damper", J. Sound Vib., 245(2), 375-383. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDertail&idt=1070512. https://doi.org/10.1006/jsvi.2000.3539
- Ditlevsen, O. (1982), "Model uncertainty in structural reliability", Struct. Safety, 1(1), 73-86. https://doi.org/10.1016/0167-4730(82)90016-9
- Du, X. (2005), "First-order and second-reliability methods, in Probabilistic Engineering Design", Missouri S&T, U.S.A.
- Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996) "Modeling and control of magneto-rheological dampers for seismic response reduction", Smart Mat. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
- Gavin, H. P. and Zaicenco, A. (2007), "Performance and reliability of semi-active equipment isolation", J. Sound Vib., 306(1-2), 74-90. https://doi.org/10.1016/j.jsv.2007.05.039.
- Gong, J.X. and Yi, P. (2011), "A robust iterative algorithm for structural reliability analysis", Struct. Multidiscip. Optim., 43(4), 519-527. https://doi.org/10.1007/s00158-010-0582-y.
- Graczykowski, C. and Pawlowski, P. (2017), "Exact physical model of magneto-rheological damper", Appl. Math. Model., 47, 400-424. https://doi.org/10.1016/j.apm.2017.02.035.
- Guo, A., Xu, Y. and Wu, B. (2002), "Seismic reliability analysis of hysteretic structure with viscoelastic dampers", Eng. Struct., 24(3), 373-383. https://doi.org/10.1016/S0141-0296(01)00103-1.
- Hadidi, A., Azar, B.F. and Rafiee, A. (2016), "Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations", Earthq. Struct., 11(4), 701-721. https://doi.org/10.12989/eas.2016.11.4.701.
- Hadidi, A., Azar, B.F. and Rafiee, A. (2017), "Efficient response surface method for high-dimensional structural reliability analysis", Struct. Safety, 68, 15-27. https://doi.org/10.1016/j.strusafe.2017.03.006.
- Hadidi, A., Azar, B.F. and Shirgir, S. (2019), "Reliability assessment of semi-active control of structures with MR damper", Earthq. Struct., 17(2), 131-141. https://doi.org/10.12989/eas.2019.17.2.131.
- Hao, G.L., Wang, W.Z., Liang, X.L. and Wang, H.B. (2013), "The new approximate calculation method for the first-order reliability", Advan. Mat. Res., 694-697, 891-895. https://doi.org/10.4028/www.scientific.net/AMR.694-697.891.
- Hasofer, A.M. and Lind, N.C. (1974), "Exact and invariant second-moment code format", J. Eng. Mech. Div., 100(1), 111-121. https://doi.org/10.1061/JMCEA3.0001848
- Hong, S., Wereley, N., Choi, Y. and Choi, S. (2008), "Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magneto-rheological dampers", J. Sound Vib., 312(3), 399-417. https://doi.org/10.1016/j.jsv.2007.07.087.
- Ikhouane, F., Manosa, V. and Rodellar, J. (2007), "Dynamic properties of the hysteretic Bouc-Wen model", Syst. Contr. Let., 56(3), 197-205. https://doi.org/10.1016/j.sysconle.2006.09.001.
- Ismail, M., Ikhouane, F. and Rodellar, J. (2009), "The hysteresis Bouc-Wen model, a survey", Archiv. Comput. Meth. Eng., 16(2), 161-188. https://doi.org/10.1007/s11831-009-9031-8.
- Kaveh, A. and Talatahari, S. (2010), "A novel heuristic optimization method: charged system search", Acta Mechanica, 213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4.
- Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures" Struct. Eng. Mech., 42(6), 783-797. https://doi.org/10.12989/sem.2012.42.6.783
- Kaveh, A. and Shokohi, F. (2016), "A hybrid optimization algorithm for the optimal design of laterally-supported castellated beams", Scientia Iranica, 23(2), 508-519. https://dx.doi.org/10.24200/sci.2016.2135.
- Keshtegar, B. (2016), "Chaotic conjugate stability transformation method for structural reliability analysis", Comput. Meth. Appl. Mech. Eng., 310, 866-885. https://doi.org/10.1016/j.cma.2016.07.046.
- Kiureghian, A.D. and Stefano, M.D. (1991), "Efficient algorithm for second-order reliability analysis", J. Eng. Mech., 117(12), 2904-2923. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2904).
- Kiureghian, A.D. (2005), "Engineering Design Reliability Handbook", CRC Press, Boca Raton, U.S.A.
- Kwok, N., Ha, Q., Nguyen, T., Li, J. and Samali, B. (2006), "A novel hysteretic model for magneto-rheological fluid dampers and parameter identification using particle swarm optimization", Sensors Actuators A: Physical, 132(2), 441-451. https://doi.org/10.1016/j.sna.2006.03.015.
- Kwok, N.M., Ha, Q.P., Nguye, M.T., Li, J. and Samali, B. (2007), "Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA", ISA Transactions, 46(2), 167-179. https://doi.org/10.1016/j.isatra.2006.08.005.
- Lee, J.O., Yang, Y.S. and Ruy, W.S. (2002), "A comparative study on reliability-index and target-performance-based probabilistic structural design optimization", Comput. Struct., 80(3-4), 257-269. https://doi.org/10.1016/S0045-7949(02)00006-8.
- Liu, P.L. and Kiureghian, A.D. (1991), "Optimization algorithms for structural reliability", Struct. Safety, 9(3), 161-177. https://doi.org/10.1016/0167-4730(91)90041-7.
- Liu, P., Liu, H., Teng, J. and Cao, T. (2006), "Parameters identification for smart dampers based on simulated annealing and genetic algorithm", Proceedings of the IEEE International Conference on Mechatronics and Automation, Henan, China, June.
- Makhduomi, H., Keshtegar, B. and Shahraki, M. (2017), "A comparative study of first-order reliability method-based steepest descent search directions for reliability analysis of steel structures", Advan. Civil Eng., 2017, 1-10. https://doi.org/10.1155/2017/8643801.
- Meng, Z., Li, G., Yang, D. and Zhan, L. (2017), "A new directional stability transformation method of chaos control for first-order reliability analysis", Struct. Multidiscip. Optim., 55(2), 601-612. https://doi.org/10.1007/s00158-016-1525-z.
- Mrabet, E., Guedri, M., Ichchou, M. and Ghanmi, S. (2015), "Stochastic structural and reliability based optimization of tuned mass damper", Mecha. Syst. Sig. Proc., 60, 437-451. https://doi.org/10.1016/j.ymssp.2015.02.014.
- Rackwitz, R. and Flessler, B. (1978), "Structural reliability under combined random load sequences", Comput. Struct., 9(5), 489-494. https://doi.org/10.1016/0045-7949(78)90046-9.
- Rahbari, N.M., Azar, B.F., Talatahari, S. and Safari, H. (2013), "Semi-active direct control method for seismic alleviation of structures using MR dampers", Struct. Control Health Monit., 20(6), 1021-1042. https://doi.org/10.1002/stc.1515.
- Rakotondrabe, M. (2011), "Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators", IEEE Transactions Autom. Sci. Eng., 8(2), 428-431. https://doi.org/10.1109/TASE.2010.2081979.
- Saremi, S., Mirjalili, S. and Lewis, A. (2017), "Grasshopper optimisation algorithm: Theory and application", Advan. Eng. Softw., 105, 30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004.
- Shahrouzi, M., Barzigar, A. and Rezazadeh, D. (2019), "Static and dynamic opposition-based learning for colliding bodies optimization", Int. J. of Optimz. Civil Eng., 9(3), 499-523. http://ijoce.iust.ac.ir/article-1-403-en.html.
- Song, J. and Kiureghian, A.D. (2006), "Generalized Bouc-Wen model for highly asymmetric hysteresis", J. Eng. Mech., 132(6), 610-618. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:6(610).
- Spencer Jr, B., Sain, M., Kantor, J. and Montemagno, C. (1992), "Probabilistic stability measures for controlled structures subject to real parameter uncertainties", Smart Materials and Structures, 1(4), 294. https://doi.org/10.1088/0964-1726/1/4/004
- Spencer Jr, B., Dyke, S., Sain, M. and Carlson, J. (1997), "Phenomenological model for magneto-rheological dampers", J. Eng. Mech., 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230).
- Sun, H., Lus, H. and Betti, H. (2013), "Identification of structural models using a modified artificial bee colony algorithm", Comput. Struct., 116(15), 59-74. https://doi.org/10.1016/j.compstruc.2012.10.017.
- Talatahari, S., Kaveh, A. and Rahbari, N. M. (2012), "Parameter identification of Bouc-Wen model for mr fluid dampers using adaptive charged system search optimization", Mech. Sci. Technol., 26(8), 1-12. https://doi.org/10.1007/s12206-012-0625-y.
- Talatahari, S. and Rahbari, N.M. (2015), "Enriched imperialist competitive algorithm for system identification of magneto-rheological dampers", Mech. Syst. Signal Proce., 62-63, 506-516. https://doi.org/10.1016/j.ymssp.2015.03.020.
- Tizhoosh, H.R. (2005), "Opposition-Based Learning: A New Scheme for Machine Intelligence", International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, May.
- Vazirizade, S.M., Nozhati, S. and Zadeh, M.A. (2017), "Seismic reliability assessment of structures using artificial neural network", J. Build. Eng., 11, 230-235. https://doi.org/10.1016/j.jobe.2017.04.001.
- Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech., 102(2), 249-263.
- Wen, Y.K. (1980), "Equivalent linearization for hysteretic systems under random excitation", J. Appl. Mech., 47(1), 150-154. https://doi.org/10.1115/1.3153594
- Wen, Y. K. (1989), "Methods of random vibration for inelastic structures", Appl. Mech. Rev., 42(2), 39-52. https://doi.org/10.1115/1.3153594.
- Yan, G. and Zhou, L.L. (2006), "Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers", J. Sound Vib., 296(1-2), 368-382. https://doi.org/10.1016/j.jsv.2006.03.011.
- Yang, G., Spencer, B.F., Carlson, J.D. and Sain, M.K. (2002), "Large-scale MR fluid dampers: modeling and dynamic performance considerations", Eng. Struct., 24(3), 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9.
- Ye, W., Feng, W. and Fan, S. (2017), "A novel multi-swarm particle swarm optimization with dynamiclearning strategy", Appl. Soft Comput., 61, 832-843. https://doi.org/10.1016/j.asoc.2017.08.051.
- Zhang, S., Luo, G. and Zhou, Y. (2017), "Hybrid Grey Wolf Optimizer Using Elite Opposition-Based Learning Strategy and Simplex Method", Int. J. Comput. Intell. Appl., 16(2), 1750012. https://doi.org/10.1142/S1469026817500122.