The aim of this study was to develop, implement, and evaluate the use of Artificial Intelligence in the prevention of violence among middle-school students. The sample for this study consisted of 20 first-year middle-school students who participated in theme selection activities in a free semester program as part of their home economics studies. The data for the study consisted of nine class observation logs, four group activity outputs, 30 class results, an online survey, and in-depth interviews with three students. A program called "R.U.OK" was developed by setting problematic situation for school violence prevention linked to the contents of the Home Economics Education(HEE) curriculum. After the program was implemented, the survey on the students' class satisfaction content elements, with AI-based learning activities and PBL and interest, displayed high points, with an average of 4.0 or higher. Our qualitative analysis produced four significant results. First, students' concerns about school violence had increased and they showed a change in attitude, having more empathy with friends and more interest in their surroundings. Second, digital and AI literacy had improved, and students' interest in digital media learning had increased. Third, there had been an improvement in problem-solving ability in terms of being able to think more critically and independently. Fourth, the results also demonstrated that there had been a positive effect on self-direction and an improved capacity for teamwork. This study was significant in demonstrating the effectiveness of a program for the prevention of school violence based on the use of digital technology in the educational environment.
The Journal of the Convergence on Culture Technology
/
v.9
no.5
/
pp.619-624
/
2023
As the importance of digital competency education is highlighted, this study is a case study on block coding classes for elementary school students during vacation for the purpose of bridging the information education gap among students. The purpose of this study is to design and operate a play-centered block coding class program and find out if it is effective in improving students' interest. As a result of completing the teaching plan through the second consultation and revision, running the class, and analyzing the change in learning interest of the students through the t-test, the play-oriented block coding class designed in this study was effective in improving students' interest. In addition, it was possible to discover interesting elements such as student-led learning process and immersion through realistic play activities, friendship, collaboration, and communication through group activities. This study is significant in suggesting a plan to increase learning interest for students who are new to coding.
Dongwoo Lee;Mi Kyung Kim;Jungyoon Yoon;Dongwon Ryu;Jae Wook Song
Journal of Korean Society of Industrial and Systems Engineering
/
v.47
no.1
/
pp.41-50
/
2024
Korea is facing a significant problem with historically low fertility rates, which is becoming a major social issue affecting the economy, labor force, and national security. This study analyzes the factors contributing to the regional gap in fertility rates and derives policy implications. The government and local authorities are implementing a range of policies to address the issue of low fertility. To establish an effective strategy, it is essential to identify the primary factors that contribute to regional disparities. This study identifies these factors and explores policy implications through machine learning and explainable artificial intelligence. The study also examines the influence of media and public opinion on childbirth in Korea by incorporating news and online community sentiment, as well as sentiment fear indices, as independent variables. To establish the relationship between regional fertility rates and factors, the study employs four machine learning models: multiple linear regression, XGBoost, Random Forest, and Support Vector Regression. Support Vector Regression, XGBoost, and Random Forest significantly outperform linear regression, highlighting the importance of machine learning models in explaining non-linear relationships with numerous variables. A factor analysis using SHAP is then conducted. The unemployment rate, Regional Gross Domestic Product per Capita, Women's Participation in Economic Activities, Number of Crimes Committed, Average Age of First Marriage, and Private Education Expenses significantly impact regional fertility rates. However, the degree of impact of the factors affecting fertility may vary by region, suggesting the need for policies tailored to the characteristics of each region, not just an overall ranking of factors.
The advent of new platforms each year along with the advancement of technology provides a new opportunity for digital media designers to develop creative and innovative contents. This phenomenon affect the same way the students that major in the digital media, and the use of the platforms that is based on the new technology in the development of contents gives a newer and useful opportunity for learning to the students who recently study the digital media area. As the main technology of the recent digital media that attract many students' attention, we are presenting virtual reality display, movement cognition, physical engine and the gesture interface, and developed the consolidated platform based on these four technologies, and designed them in a way that can be more easily implemented in a simpler way. In order to study the efficiency of the platform with the objective of the development of digital media contents, we have developed four different prototype contents, and have measured based on the user's preference, efficiency and satisfaction. In the results of usability evaluation, functionality, effectiveness, efficiency, satisfaction were rated as 'high'. This results shows that the suggested 3D platform environment provides students to develop a rapid prototype fast and easy, and this may have a positive influence on students major in the digital media to conduct creative development research.
Since stock movements forecasting is an important issue both academically and practically, studies related to stock price prediction have been actively conducted. The stock price forecasting research is classified into structured data and unstructured data, and it is divided into technical analysis, fundamental analysis and media effect analysis in detail. In the big data era, research on stock price prediction combining big data is actively underway. Based on a large number of data, stock prediction research mainly focuses on machine learning techniques. Especially, research methods that combine the effects of media are attracting attention recently, among which researches that analyze online news and utilize online news to forecast stock prices are becoming main. Previous studies predicting stock prices through online news are mostly sentiment analysis of news, making different corpus for each company, and making a dictionary that predicts stock prices by recording responses according to the past stock price. Therefore, existing studies have examined the impact of online news on individual companies. For example, stock movements of Samsung Electronics are predicted with only online news of Samsung Electronics. In addition, a method of considering influences among highly relevant companies has also been studied recently. For example, stock movements of Samsung Electronics are predicted with news of Samsung Electronics and a highly related company like LG Electronics.These previous studies examine the effects of news of industrial sector with homogeneity on the individual company. In the previous studies, homogeneous industries are classified according to the Global Industrial Classification Standard. In other words, the existing studies were analyzed under the assumption that industries divided into Global Industrial Classification Standard have homogeneity. However, existing studies have limitations in that they do not take into account influential companies with high relevance or reflect the existence of heterogeneity within the same Global Industrial Classification Standard sectors. As a result of our examining the various sectors, it can be seen that there are sectors that show the industrial sectors are not a homogeneous group. To overcome these limitations of existing studies that do not reflect heterogeneity, our study suggests a methodology that reflects the heterogeneous effects of the industrial sector that affect the stock price by applying k-means clustering. Multiple Kernel Learning is mainly used to integrate data with various characteristics. Multiple Kernel Learning has several kernels, each of which receives and predicts different data. To incorporate effects of target firm and its relevant firms simultaneously, we used Multiple Kernel Learning. Each kernel was assigned to predict stock prices with variables of financial news of the industrial group divided by the target firm, K-means cluster analysis. In order to prove that the suggested methodology is appropriate, experiments were conducted through three years of online news and stock prices. The results of this study are as follows. (1) We confirmed that the information of the industrial sectors related to target company also contains meaningful information to predict stock movements of target company and confirmed that machine learning algorithm has better predictive power when considering the news of the relevant companies and target company's news together. (2) It is important to predict stock movements with varying number of clusters according to the level of homogeneity in the industrial sector. In other words, when stock prices are homogeneous in industrial sectors, it is important to use relational effect at the level of industry group without analyzing clusters or to use it in small number of clusters. When the stock price is heterogeneous in industry group, it is important to cluster them into groups. This study has a contribution that we testified firms classified as Global Industrial Classification Standard have heterogeneity and suggested it is necessary to define the relevance through machine learning and statistical analysis methodology rather than simply defining it in the Global Industrial Classification Standard. It has also contribution that we proved the efficiency of the prediction model reflecting heterogeneity.
The purpose of this study is to verify the prediction of mastery-approach goal orientation, task value, and self-regulated learning strategy on academic satisfaction and achievement of cyber engineering university students. For this study, 219 engineering students of H cyber university who enrolled in the spring semester of 2011 was chosen and completed web surveys. A hypothetical model proposed included mastery-approach goal orientation, task value, and self-regulated learning strategy as predictors, and academic satisfaction and achievement as criteria variables. The results of this study through multiple regression analysis indicated that task value(${\beta}$=.401) and self-regulated learning strategy(${\beta}$=.401) predicted significantly on academic satisfaction. In addition, self-regulated learning strategy(${\beta}$=.301) and mastery-approach goal orientation(${\beta}$=.196) predicted significantly on academic achievement. The result of this study suggested that mastery-approach goal orientation, task value, and self-regulated learning strategy should be considered for improving academic satisfaction and achievement in cyber engineering education.
The purpose of this study was to develop a digital textbook on 'structure and contraction mechanism of skeletal muscle' with the learning model for biomimicry-based convergence. The unit of 'structure and contraction mechanism of skeletal muscle' is a part of Life Science I in high school. The convergence learning model was designed with three phases of biomimicry-based convergence (Exploration-Design-Implementation) including 3D modeling & printing. The developed digital textbook was composed of 8 sessions which contains the following learning contents : Exploration of skeletal muscle, creative designing of skeletal muscle using sketch application and 3D modeling, convergent implementing of the designed using 3D printing, exploration of muscle contraction, creative designing of muscle contraction using sketch application and 3D modeling, and convergent implementing of the designed using 3D printing. Each session is also involved in the contents of gallery widgets, media widgets, keynote widgets, sketch widgets, the cloud, polling widgets, and review widgets for interactive and mobile learning. After administering the developed digital textbook to 20 high school students, it was shown a positive effectiveness on life science learning for high school students. Moreover, the digital textbook was evaluated as to promote student's abilities on creative designs and implementation related to biomimicry-based convergence. The digital textbook was also shown a favorable response on students' interest and self-directed learning on life science.
This study applied the e-PBL (e-Project-based learning) method for "Urban Forest Management" courses in the Department of Forest Science at S University to progress in university forest education. e-PBL effectively motivates self-directed learning, problem-solving, communication skills, and learners' responsibility by enabling them to choose, design, and perform their projects. Due to the COVID-19 pandemic in 2020, learners were encouraged to use online media to carry out projects and submit presentations for the campus forest. Learners' educational effects were subsequently investigated through a five-point Likert scale. This study discovered a positive effect on learners' motivation and interest (4.17) through e-PBL. Learners responded that e-PBL also helped their understanding regarding the subject (4.17). In addition, this study provided evidence that the e-PBL method was helpful in problem-solving (4.25), communication (4.33), and decision-making skills (4.21). According to learners' responses, there are positive indications that learners were satisfied with e-PBL. Learners responded that interactions and communications with team members could improve their understanding of the subject. Hence, there is scope for improving an efficient and successful e-PBL model suitable for university forest education by providing more efficient instructional time management, e-PBL method guidelines, and institutional support.
Compared to the continuously increasing dog population and industry size in Korea, systematic analysis of related data and research on breed classification methods are very insufficient. In this paper, an automatic breed classification method is proposed using deep learning technology for 14 major dog breeds domestically raised. To do this, dog images are collected for deep learning training and a dataset is built, and a breed classification algorithm is created by performing transfer learning based on VGG-16 and Resnet-34 as backbone networks. In order to check the transfer learning effect of the two models on dog images, we compared the use of pre-trained weights and the experiment of updating the weights. When fine tuning was performed based on VGG-16 backbone network, in the final model, the accuracy of Top 1 was about 89% and that of Top 3 was about 94%, respectively. The domestic dog breed classification method and data construction proposed in this paper have the potential to be used for various application purposes, such as classification of abandoned and lost dog breeds in animal protection centers or utilization in pet-feed industry.
Recently, people's attention and worries about fine particulate matter have been increasing. Due to the construction and maintenance costs, there are insufficient air quality monitoring stations. As a result, people have limited information about the concentration of fine particulate matter, depending on the location. Studies have been undertaken to estimate the fine particle concentrations in areas without a measurement station. Yet there are limitations in that the estimate cannot take account of other factors that affect the concentration of fine particle. In order to solve these problems, we propose a framework for estimating the concentration of fine particulate matter of a specific area using meteorological data and traffic data. Since there are more grids without a monitor station than grids with a monitor station, we used a domain adversarial neural network based on the domain adaptation method. The features extracted from meteorological data and traffic data are learned in the network, and the air quality index of the corresponding area is then predicted by the generated model. Experimental results demonstrate that the proposed method performs better as the number of source data increases than the method using conditional random fields.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.