• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.038 seconds

English Vocabulary Learning Application Development Applying Forgetting Curve and Match Result Based Rating System (망각곡선과 대결 기반 순위 결정 시스템을 적용한 영어 단어 학습 어플리케이션 개발)

  • Youm, Kiho;Oh, Kyoungsu;Chun, Youngjae
    • Journal of Korea Game Society
    • /
    • v.15 no.3
    • /
    • pp.151-160
    • /
    • 2015
  • This paper presents English vocabulary memorization system using forgetting curve to automatically adjust the vocabulary difficulty to match learner's level. Our system will decide the appropriate repetition cycle, depending on the number of memorizing words through the forgetting curve, then requires an iterative learning. No matter what learners know or do not know, words are reviewed. To save time by reviewing some words which have the highest probability that learners forget. And it provides vocabulary based on learner level, which makes learner maintain their interest and achievement. A general system provides vocabularies which difficulty matches with evaluated ones, or randomly provides some vocabularies without consideration of users' level. But we apply the "Glicko" system which is being used in the online chess game ranking system to adjust the vocabulary's difficulty. We utilize the system used in the one-by-one player system to our vocabulary-human system. As a result, learners's level and the vocabularies's difficulty is measured in the review process. Moreover it maximizes the performance of English vocabulary memorization by applying feedbacks from practice testing and distributed learning.

Fruit's Defective Area Detection Using Yolo V4 Deep Learning Intelligent Technology (Yolo V4 딥러닝 지능기술을 이용한 과일 불량 부위 검출)

  • Choi, Han Suk
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.46-55
    • /
    • 2022
  • It is very important to first detect and remove defective fruits with scratches or bruised areas in the automatic fruit quality screening system. This paper proposes a method of detecting defective areas in fruits using the latest artificial intelligence technology, the Yolo V4 deep learning model in order to overcome the limitations of the method of detecting fruit's defective areas using the existing image processing techniques. In this study, a total of 2,400 defective fruits, including 1,000 defective apples and 1,400 defective fruits with scratch or decayed areas, were learned using the Yolo V4 deep learning model and experiments were conducted to detect defective areas. As a result of the performance test, the precision of apples is 0.80, recall is 0.76, IoU is 69.92% and mAP is 65.27%. The precision of pears is 0.86, recall is 0.81, IoU is 70.54% and mAP is 68.75%. The method proposed in this study can dramatically improve the performance of the existing automatic fruit quality screening system by accurately selecting fruits with defective areas in real time rather than using the existing image processing techniques.

Prediction of Music Generation on Time Series Using Bi-LSTM Model (Bi-LSTM 모델을 이용한 음악 생성 시계열 예측)

  • Kwangjin, Kim;Chilwoo, Lee
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.65-75
    • /
    • 2022
  • Deep learning is used as a creative tool that could overcome the limitations of existing analysis models and generate various types of results such as text, image, and music. In this paper, we propose a method necessary to preprocess audio data using the Niko's MIDI Pack sound source file as a data set and to generate music using Bi-LSTM. Based on the generated root note, the hidden layers are composed of multi-layers to create a new note suitable for the musical composition, and an attention mechanism is applied to the output gate of the decoder to apply the weight of the factors that affect the data input from the encoder. Setting variables such as loss function and optimization method are applied as parameters for improving the LSTM model. The proposed model is a multi-channel Bi-LSTM with attention that applies notes pitch generated from separating treble clef and bass clef, length of notes, rests, length of rests, and chords to improve the efficiency and prediction of MIDI deep learning process. The results of the learning generate a sound that matches the development of music scale distinct from noise, and we are aiming to contribute to generating a harmonistic stable music.

Textile material classification in clothing images using deep learning (딥러닝을 이용한 의류 이미지의 텍스타일 소재 분류)

  • So Young Lee;Hye Seon Jeong;Yoon Sung Choi;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.43-51
    • /
    • 2023
  • As online transactions increase, the image of clothing has a great influence on consumer purchasing decisions. The importance of image information for clothing materials has been emphasized, and it is important for the fashion industry to analyze clothing images and grasp the materials used. Textile materials used for clothing are difficult to identify with the naked eye, and much time and cost are consumed in sorting. This study aims to classify the materials of textiles from clothing images based on deep learning algorithms. Classifying materials can help reduce clothing production costs, increase the efficiency of the manufacturing process, and contribute to the service of recommending products of specific materials to consumers. We used machine vision-based deep learning algorithms ResNet and Vision Transformer to classify clothing images. A total of 760,949 images were collected and preprocessed to detect abnormal images. Finally, a total of 167,299 clothing images, 19 textile labels and 20 fabric labels were used. We used ResNet and Vision Transformer to classify clothing materials and compared the performance of the algorithms with the Top-k Accuracy Score metric. As a result of comparing the performance, the Vision Transformer algorithm outperforms ResNet.

A Study about Learning Graph Representation on Farmhouse Apple Quality Images with Graph Transformer (그래프 트랜스포머 기반 농가 사과 품질 이미지의 그래프 표현 학습 연구)

  • Ji Hun Bae;Ju Hwan Lee;Gwang Hyun Yu;Gyeong Ju Kwon;Jin Young Kim
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Recently, a convolutional neural network (CNN) based system is being developed to overcome the limitations of human resources in the apple quality classification of farmhouse. However, since convolutional neural networks receive only images of the same size, preprocessing such as sampling may be required, and in the case of oversampling, information loss of the original image such as image quality degradation and blurring occurs. In this paper, in order to minimize the above problem, to generate a image patch based graph of an original image and propose a random walk-based positional encoding method to apply the graph transformer model. The above method continuously learns the position embedding information of patches which don't have a positional information based on the random walk algorithm, and finds the optimal graph structure by aggregating useful node information through the self-attention technique of graph transformer model. Therefore, it is robust and shows good performance even in a new graph structure of random node order and an arbitrary graph structure according to the location of an object in an image. As a result, when experimented with 5 apple quality datasets, the learning accuracy was higher than other GNN models by a minimum of 1.3% to a maximum of 4.7%, and the number of parameters was 3.59M, which was about 15% less than the 23.52M of the ResNet18 model. Therefore, it shows fast reasoning speed according to the reduction of the amount of computation and proves the effect.

Collaborative Learning System based on Augmented Reality for Enhancing Collaboration (협업성 강화를 위한 증강현실 기반의 협업적 교육 시스템)

  • Park, Byung-June;Baek, Yeong-Tae;Park, Seung-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.101-109
    • /
    • 2014
  • This paper aims to design and implement a collaborative learning system based on the augmented reality. The existing augment reality-based learning systems have just focused on interactivity between a system and learners without consideration of cooperability, thereby leading to an ineffective approach to encouraging an learning system to be more supportive and conducive of and to cooperation among learners. The collaborative learning system is a learning method, with which learners achieve a common objective through critical thinking and cooperative teamwork so as to seek solutions to such fulfillment. This requires positive interdependence, proactive interactions, a sense of responsibility shared by individuals as well as the group, and development of teamwork among learners. Educators and systems assume a critical role in helping the collaborative education be effective. An educator is responsible for defining a project at the outset of learning activities, organizing groups for learners, and providing evaluation criteria applied to a group's project activities. Meanwhile, a system shall support interactions to take place while facilitating learning activities. Furthermore, an educator shall provide a system for managing and evaluating activities involving interactions among learners. This paper suggests and embodies a collaborative learning system based on the augmented reality with consideration of the aforementioned collaborative education.

The Intercommunication Process of Interactive Media Art and Merleau-Ponty's corporeity phenomenology (인터랙티브 미디어 아트의 상호작용 과정과 메를로 퐁티의 몸 현상학)

  • Ha, Im-Sung
    • Cartoon and Animation Studies
    • /
    • s.29
    • /
    • pp.77-102
    • /
    • 2012
  • Interactive Media Art has been developed a lot in digital age. Especially, the audience try to make interactions by accessing the world of art as one of main interacting figures, while they used to be totally separated from the art in traditional art. Also, it is one of exclusive features distinguished from the other art genres. In this thesis, the intercommunication process of interactive media art is classified and compared with Merleau-Ponty's corporeity phenomenology theories. Merleau-Ponty's corporeity phenomenology insists integrated perception through body against the western intelligence philosophy focusing on binomial reasons. Merleau-Ponty's corporeity phenomenology, which suggested the new perception way towards the art, is analyzed in this thesis by comparing it with detailed factors of Intercommunication process of Interactive Media Art. The Intercommunication process of Media Art is classified into , , , , . Additionally, they are studied and compared with the concept of , , , , out of Ponty's corporeity phenomenology theories. Therefore, it is concluded clearly that corporeity, synesthesia, poly sensation and spaciality drawn from Intercommunication process of Media Art have something in common with Ponty's corporeity phenomenology theories rather than the other art genre or minimalism art styles. Furthermore, a new direction of study upon modern Interactive Media Art is suggested.

A Study on Social Media Sentiment Analysis for Exploring Public Opinions Related to Education Policies (교육정책관련 여론탐색을 위한 소셜미디어 감정분석 연구)

  • Chung, Jin-Myeong;Yoo, Ki-Young;Koo, Chan-Dong
    • Informatization Policy
    • /
    • v.24 no.4
    • /
    • pp.3-16
    • /
    • 2017
  • With the development of social media services in the era of Web 2.0, the public opinion formation site has been partially shifted from the traditional mass media to social media. This phenomenon is continuing to expand, and public opinions on government polices created and shared on social media are attracting more attention. It is particularly important to grasp public opinions in policy formulation because setting up educational policies involves a variety of stakeholders and conflicts. The purpose of this study is to explore public opinions about education-related policies through an empirical analysis of social media documents on education policies using opinion mining techniques. For this purpose, we collected the education policy-related documents by keyword, which were produced by users through the social media service, tokenized and extracted sentimental qualities of the documents, and scored the qualities using sentiment dictionaries to find out public preferences for specific education policies. As a result, a lot of negative public opinions were found regarding the smart education policies that use the keywords of digital textbooks and e-learning; while the software education policies using coding education and computer thinking as the keywords had more positive opinions. In addition, the general policies having the keywords of free school terms and creative personality education showed more negative public opinions. As much as 20% of the documents were unable to extract sentiments from, signifying that there are still a certain share of blog posts or tweets that do not reflect the writers' opinions.

Character Motion Control by Using Limited Sensors and Animation Data (제한된 모션 센서와 애니메이션 데이터를 이용한 캐릭터 동작 제어)

  • Bae, Tae Sung;Lee, Eun Ji;Kim, Ha Eun;Park, Minji;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.85-92
    • /
    • 2019
  • A 3D virtual character playing a role in a digital story-telling has a unique style in its appearance and motion. Because the style reflects the unique personality of the character, it is very important to preserve the style and keep its consistency. However, when the character's motion is directly controlled by a user's motion who is wearing motion sensors, the unique style can be discarded. We present a novel character motion control method that uses only a small amount of animation data created only for the character to preserve the style of the character motion. Instead of machine learning approaches requiring a large amount of training data, we suggest a search-based method, which directly searches the most similar character pose from the animation data to the current user's pose. To show the usability of our method, we conducted our experiments with a character model and its animation data created by an expert designer for a virtual reality game. To prove that our method preserves well the original motion style of the character, we compared our result with the result obtained by using general human motion capture data. In addition, to show the scalability of our method, we presented experimental results with different numbers of motion sensors.

An Implementation of Web-based Instructional Design System for University Instructors (대학교수자용 웹기반 수업설계 시스템)

  • Kan, Jin-Sook;Lee, Ching-Chan
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.222-232
    • /
    • 2010
  • The purpose of this investigation was to help university professors for making their systematic design of instruction easily and scientifically. To increase of learner's studying ability, the systemic instructional design is imperative. But most of university professors could not get proper experiences to know develop instructional design system, specially to develop web-based system. This new system made it possible to select the proper instructional methods and the media type suitable for the corresponding data. And also every professor who is involved to know this system, can put informations for the target learners, learning contents and learning objectives, and present the proper media types and the many different conditions in the process of the each instructional design process. Finally, the results of the learner's study will be effective and professors showed their positive opinions for the using of the system.