Acknowledgement
본 논문은 "2019학년도 목포대학교 교내연구과제 지원에 의하여 연구 되었음"
References
- 최한석, 조제봉, 최승영, "스마트 과일 품질 선별 플랫폼 구조 설계," 한국콘텐츠학회 2017 춘계종합학술대회, pp. 97-98, 2017년 5월
- Han S. Choi, Hong S. Choi, and H. D. Mun, "A Smart Fruits Quality Classification Hardware Design using the Near-Infraed Spectroscopy and Image Processing Technologies," International Conference on Convergence Content(ICCC 2016), pp. 9-10, Dec. 2016.
- Han Suk Choi,"Design and Implementation of an Automated Fruit Quality Classification System," Smart Media Journal, Vol. 7, No. 4, pp. 37-43, Dec. 2018. https://doi.org/10.30693/SMJ.2018.7.4.37
- S. Naik and B. Patel, "Machine Vision based Fruit Clssification and Grading - A Review," International Journal of Computer Applications(0975-8887), Vol. 170, No.9, pp. 22-34, Jul. 2017. https://doi.org/10.5120/ijca2017914937
- 김범창, 손현승, 최한석, "딥러닝 기반 과일 불량부위 검출 방법," 2021 한국스마트미디어학회 추계학술대회, 2021년 11월
- Mert R. Sabuncu, "Entropy-based Image Regestration," Ph.D. Dissertation, Prinston University, 2006.11.
- 이희준, 이원석, 최인혁, 이충권, "YOLOv3을 이용한 과일 표피 불량검출 모델: 복숭아 사례", Information Systems Review. 제22권, 제1호, 113-124쪽 2020년 https://doi.org/10.14329/isr.2020.22.1.113
- 김영민, 박승민, "딥러닝 기반 YOLO를 활용한 후숙 과일 분류 및 숙성 예측 시스템", 한국컴퓨터정보학회 하계학술대회, 제29권, 제2호, pp.187-188, 2021년 7월
- S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," in Proc. Advances in Neural Information Processing Systems 28 (NIPS 2015), pp.91-99, 2015.
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, "SSD: Single Shot MultiBox Detector," Computer Vision ECCV 2016, pp. 21-37, Sep. 2016.
- J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788, 2016.
- Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao, "YOLOv4: Optimal speed and accuracy of object detection," arXiv preprint arXiv:2004.10934, 2020.
- YOLO v4 논문(YOLOv4: Optimal Speed and Accuracy of Object Detection) 리뷰, https://herbwood.tistory.com (accessed Aug. 14, 2021.)
- Yolo_mark: GUI for marking bounded boxes of objects in images for training neural network Yolo v3 and v2, https://GitHub=AlexeyAB/Yolo_mark.(accessed Aug. 14, 2021.)
- Sik-Ho Tsang, "Review-Bag of Freebies for Training Object Detection Neural Networks", https://sh-tsang.medium.com/review-bag-of-freebies-for-training-object-detection-neural-networks, (accessed Aug. 14, 2021.)
- Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, Youngjoon Yoo, CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6023-6032, May, 2019.
- Jacob Solawetz, Data Augmentation in Yolo 4, https://blog.roboflow.com/yolov4 - data-augmentation/, (accessed May 13, 2020.)
- 신영학, 최정현, 최한석, 스마트 양식을 위한 딥러닝 기반 어류 검출 및 이동경로 추적, 한국콘텐츠학회논문지, 제21권 제1호, pp. 552-560, 2019. https://doi.org/10.5392/JKCA.2021.21.01.552
- 박준, 김준영, 박성욱, 정세훈, 심춘보, "ResNet 기반 작물 생육단계 추정 모델 개발," 스마트미디어저널, 제11권, 제2호, 53-62쪽, 2022년 03월