Kim, Hyun-Jong;Ryu, Seung-Eui;Lee, Chul-Ho;Nam, Kwang Woo
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.9
/
pp.345-351
/
2020
Administrative agencies today are paying keen attention to big data analysis to improve their policy responsiveness. Of all the big data, news articles can be used to understand public opinion regarding policy and policy issues. The amount of news output has increased rapidly because of the emergence of new online media outlets, which calls for the use of automated bots or automatic document classification tools. There are, however, limits to the automatic collection of news articles related to specific agencies or departments based on the existing news article categories and keyword search queries. Thus, this paper proposes a method to process articles using classification glossaries that take into account each agency's different work features. To this end, classification glossaries were developed by extracting the work features of different departments using Word2Vec and topic modeling techniques from news articles related to different agencies. As a result, the automatic classification of newspaper articles for each department yielded approximately 71% accuracy. This study is meaningful in making academic and practical contributions because it presents a method of extracting the work features for each department, and it is an unsupervised learning-based automatic classification method for automatically classifying news articles relevant to each agency.
As deep learning-based object detection and recognition research have been developed recently, the scope of application to industry and real life is expanding. But deep learning-based systems in the construction system are still much less studied. Calculating materials in the construction system is still manual, so it is a reality that transactions of wrong volumn calculation are generated due to a lot of time required and difficulty in accurate accumulation. A fast and accurate automatic drawing recognition system is required to solve this problem. Therefore, we propose an AI-based automatic drawing recognition accumulation system that detects and recognizes steel materials in construction drawings. To accurately detect steel materials in construction drawings, we propose data augmentation techniques and spatial attention modules for improving small object detection performance based on YOLOv4. The detected steel material area is recognized by text, and the number of steel materials is integrated based on the predicted characters. Experimental results show that the proposed method increases the accuracy and precision by 1.8% and 16%, respectively, compared with the conventional YOLOv4. As for the proposed method, Precision performance was 0.938. The recall was 1. Average Precision AP0.5 was 99.4% and AP0.5:0.95 was 67%. Accuracy for character recognition obtained 99.9.% by configuring and learning a suitable dataset that contains fonts used in construction drawings compared to the 75.6% using the existing dataset. The average time required per image was 0.013 seconds in the detection, 0.65 seconds in character recognition, and 0.16 seconds in the accumulation, resulting in 0.84 seconds.
With the recent development of hardware computing devices and software based frameworks, machine tasks using deep learning networks are expected to be utilized in various industrial fields and personal IoT devices. However, in order to overcome the limitations of high cost device for utilizing the deep learning network and that the user may not receive the results requested when only the machine task results are transmitted from the server, Collaborative Intelligence (CI) proposed the transmission of feature maps as a solution. In this paper, an efficient compression method for feature maps with vast data sizes to support the CI paradigm was analyzed and presented through experiments. This method increases redundancy by applying feature map reordering to improve compression efficiency in traditional video codecs, and proposes a feature map method that improves compression efficiency and maintains the performance of machine tasks by simultaneously utilizing image compression format and video compression format. As a result of the experiment, the proposed method shows 14.29% gain in BD-rate of BPP and mAP compared to the feature compression anchor of MPEG-VCM.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.34
no.1
/
pp.167-188
/
2023
This study reviewed the current status of low-experienced teacher librarians with less than 5 years and attempted to identify their educational needs through IPA analysis, Borich Priority Formula, and The Locus for Focus Model. A survey was conducted on low-experienced teacher librarians with less than 5 years of experience to analyze their process in the pre-service teacher training and experiences before an appointment and to identify teacher librarians instructional expertise. The results of the analysis of the study are as follows. First, there was a statistically significant difference between the importance and performance in all areas of instructional expertise of low-experienced teacher librarians. Second, 'reading education-practice progress' was recognized as a 'Keep up good work' with high importance and satisfaction, and 'library-based instruction planning, progress evaluation', 'information literacy-curriculum design', and 'digital and media literacy education-progress and evaluation' were recognized as areas of 'Concentrate here' through IPA analysis. Third, In the Borich Priority Formula, 'teaching-learning evaluation', 'teaching-learning progress', and 'teaching-learning plan' in the Library based instruction area showed the highest educational needs. Fourth, the library-based instruction was shown to the high discrepancy/high importancy area as same as the Borich Proity Formula. The results of this study can provide implications for improving the instructional expertise of teacher librarians.
As air combat system technologies developed in recent years, the development of air defense systems is required. In the operating concept of the anti-aircraft defense system, selecting an appropriate armament for the target is one of the system's capabilities in efficiently responding to threats using limited anti-aircraft power. Much of the flying threat identification relies on the operator's visual identification. However, there are many limitations in visually discriminating a flying object maneuvering high speed from a distance. In addition, as the demand for unmanned and intelligent weapon systems on the modern battlefield increases, it is essential to develop a technology that automatically identifies and classifies the aircraft instead of the operator's visual identification. Although some examples of weapon system identification with deep learning-based models by collecting video data for tanks and warships have been presented, aerial vehicle identification is still lacking. Therefore, in this paper, we present a model for classifying fighters, helicopters, and drones using a convolutional neural network model and analyze the performance of the presented model.
International Journal of Computer Science & Network Security
/
v.22
no.8
/
pp.105-112
/
2022
Innovation is considered as an implemented innovation in education - in the content, methods, techniques and forms of educational activity and personality education (methods, technologies), in the content and forms of organizing the management of the educational system, as well as in the organizational structure of educational institutions, in the means of training and education and in approaches to social services in education, distance and multimedia learning, which significantly increases the quality, efficiency and effectiveness of the educational process. The classification of currently known pedagogical technologies that are most often used in practice is shown. The basis of the innovative activity of a modern teacher is the formation of an innovative program-methodical complex in the discipline. Along with programmatic and content provision of disciplines, the use of informational tools and their didactic properties comes first. It combines technical capabilities - computer and video technology with live communication between the lecturer and the audience. In pedagogical innovation, the principles reflecting specific laws and regularities of the implementation of innovative processes are singled out. All principles are elements of a complex system of organization and management of innovative activities in the field of education and training. They closely interact with each other, which enhances the effect of each of them due to the synergistic effect. To improve innovative activities in the training of students, today computer technologies are widely used in pedagogy as a science, as well as directly in the practice of the pedagogical process. They have gained the most popularity in such activities as distance learning, online learning, assistance in the education management system, development of programs and virtual textbooks in various subjects, searching for information on the network for the educational process, computer testing of students' knowledge, creation of electronic libraries, formation of a unified scientific electronic environment, publication of virtual magazines and newspapers on pedagogical topics, teleconferences, expansion of international cooperation in the field of Internet education. The article considers computer technologies as the main building material for the entire society. In the modern world, there is a need to prepare a person for life in a multimedia environment. This process should be started as early as possible, because the child's contact with the media is present almost from the moment of his birth.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.4
/
pp.593-601
/
2017
In this paper, we constructed the model of production/investment, distribution, and screening by using variables that can be considered at each stage according to the value chain stage of the movie industry. To increase the predictive power of the model, a regression analysis was used to derive meaningful variables. Based on the given variables, we compared the difference in predictive power between the artificial neural network, which is a machine learning analysis method, and the decision tree analysis method. As a result, the accuracy of artificial neural network was higher than that of decision trees when all variables were added in production/ investment model and distribution model. However, decision trees were more accurate when selected variables were applied according to regression analysis results. In the screening model, the accuracy of the artificial neural network was higher than the accuracy of the decision tree regardless of whether the regression analysis result was reflected or not. This paper has an implication which we tried to improve the performance of movie prediction model by using machine learning analysis. In addition, we tried to overcome a limitation of linear approach by reflecting the results of regression analysis to ANN and decision tree model.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.4-7
/
2022
Recently, multi-view depth estimation methods using deep learning network for the 3D scene reconstruction have gained lots of attention. Multi-view video contents have various characteristics according to their camera composition, environment, and setting. It is important to understand these characteristics and apply the proper depth estimation methods for high-quality 3D reconstruction tasks. The camera setting represents the physical distance which is called baseline, between each camera viewpoint. Our proposed methods focus on deciding the appropriate depth estimation methodologies according to the characteristics of multi-view video contents. Some limitations were found from the empirical results when the existing multi-view depth estimation methods were applied to a divergent or large baseline dataset. Therefore, we verified the necessity of obtaining the proper number of source views and the application of the source view selection algorithm suitable for each dataset's capturing environment. In conclusion, when implementing a deep learning-based depth estimation network for 3D scene reconstruction, the results of this study can be used as a guideline for finding adaptive depth estimation methods.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.17
no.5
/
pp.117-132
/
2022
Human Human species run into a blind alley due to abnormal weather and climates everywhere in global village. Human beings are helpless against the nature and might begin to learn humbleness just now. However, humans cannot attribute current abnormal weather and climates to only natural phenomenon because we have never been affectionate to global environments sufficiently up to now that results in running into this blind alley. At this point, the only thing that humans can do is to love and care for the earth more. ESG is an emerging topic to cope with this issue and practice of ESG will be the pending mission for the next generation. In this research, 'active participatory learning program for ESG practice' is designed by 'connecting ESG with Entrepreneurship' through over 20 years of experienced current teachers in elementary and junior·senior high school, professors in university and field experts in education. Analysis of learning effectiveness before and after the implementation of education program showed meaningful result in elementary and junior·senior high school. Thus, I would like to suggest a proposal based on concerns about 'What should we do to overcome the global crisis?" by paying attention to ESG from elementary school.
KIPS Transactions on Computer and Communication Systems
/
v.13
no.1
/
pp.21-30
/
2024
As the self-driving car market continues to grow, the need for charging infrastructure is growing. However, in the case of a wireless charging system, stability issues are being raised because it requires a large amount of power compared with conventional wired charging. SAE J2954 is a standard for building autonomous vehicle wireless charging infrastructure, and the standard defines a communication method between a vehicle and a power transmission system. SAE J2954 recommends using physical media such as Wi-Fi, Bluetooth, and UWB as a wireless charging communication method for autonomous vehicles to enable communication between the vehicle and the charging pad. In particular, UWB is a suitable solution for indoor and outdoor charging environments because it exhibits robust communication capabilities in indoor environments and is not sensitive to interference. In this standard, the process for building a wireless power transmission system is divided into several stages from the start to the completion of charging. In this study, UWB technology is used as a means of fine alignment, a process in the wireless power transmission system. To determine the applicability to an actual autonomous vehicle wireless power transmission system, experiments were conducted based on distance, and the distance information was collected from UWB. To improve the accuracy of the distance data obtained from UWB, we propose a Single Model and Multi Model that apply machine learning and deep learning techniques to the collected data through a three-step preprocessing process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.