• Title/Summary/Keyword: Learning Data Model

Search Result 4,644, Processing Time 0.039 seconds

Evaluation of Deep Learning Model for Scoliosis Pre-Screening Using Preprocessed Chest X-ray Images

  • Min Gu Jang;Jin Woong Yi;Hyun Ju Lee;Ki Sik Tae
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.293-301
    • /
    • 2023
  • Scoliosis is a three-dimensional deformation of the spine that is a deformity induced by physical or disease-related causes as the spine is rotated abnormally. Early detection has a significant influence on the possibility of nonsurgical treatment. To train a deep learning model with preprocessed images and to evaluate the results with and without data augmentation to enable the diagnosis of scoliosis based only on a chest X-ray image. The preprocessed images in which only the spine, rib contours, and some hard tissues were left from the original chest image, were used for learning along with the original images, and three CNN(Convolutional Neural Networks) models (VGG16, ResNet152, and EfficientNet) were selected to proceed with training. The results obtained by training with the preprocessed images showed a superior accuracy to those obtained by training with the original image. When the scoliosis image was added through data augmentation, the accuracy was further improved, ultimately achieving a classification accuracy of 93.56% with the ResNet152 model using test data. Through supplementation with future research, the method proposed herein is expected to allow the early diagnosis of scoliosis as well as cost reduction by reducing the burden of additional radiographic imaging for disease detection.

A Study on the Construction of Financial-Specific Language Model Applicable to the Financial Institutions (금융권에 적용 가능한 금융특화언어모델 구축방안에 관한 연구)

  • Jae Kwon Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.79-87
    • /
    • 2024
  • Recently, the importance of pre-trained language models (PLM) has been emphasized for natural language processing (NLP) such as text classification, sentiment analysis, and question answering. Korean PLM shows high performance in NLP in general-purpose domains, but is weak in domains such as finance, medicine, and law. The main goal of this study is to propose a language model learning process and method to build a financial-specific language model that shows good performance not only in the financial domain but also in general-purpose domains. The five steps of the financial-specific language model are (1) financial data collection and preprocessing, (2) selection of model architecture such as PLM or foundation model, (3) domain data learning and instruction tuning, (4) model verification and evaluation, and (5) model deployment and utilization. Through this, a method for constructing pre-learning data that takes advantage of the characteristics of the financial domain and an efficient LLM training method, adaptive learning and instruction tuning techniques, were presented.

A Study on the Structural Equation Model for Students' Satisfaction in the Blended Leaning Environment (블랜디드 러닝 환경에서 수업만족 영향요인의 구조적 모델 연구)

  • Heo, Gyun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.135-143
    • /
    • 2009
  • The purpose of this study was to explore factors that affected the satisfaction of students' experiences in an education course, with the educational method and educational technology designed with a blended learning strategy. Blended learning is currently recognized as a good solution for the problems posed by both online and face-to-face learning, because it has features like flexibility and accessibility by using tools supporting both individualization and socialization. This study is one case that illustrates how blended learning can be applied at the university level. Subjects were 56 students who had participated in the class and responded to the survey questions. The gathered data were analyzed by using Factor Analysis and the Structural Equation Model. Based on the results of Factor Analysis, data revealed 5 factors: learning motivation, previous experience, ability to use information & technology, capability of self-regulated learning, and learning satisfaction. The results of the Structural Equation Model revealed causal relationships among the aforementioned factors as follows: (a) there was a statistically meaningful causal relationship between "learning motivation" and "capability of self-regulated learning", (b) there was a statistically meaningful casual relationship between "previous experience" and "capability of self-regulated learning", and (c) "capability of self-regulated learning" directly affected "learning satisfaction".

  • PDF

A Neural Net Type Process Model for Enhancing Learning Compensation Function in Hot Strip Finishing Rolling Mill (열연 마무리 압연기에서 압연속도 학습보상기능개선을 위한 신경망형 공정 모델)

  • Hong, Seong-Cheol;Lee, Haiyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.59-67
    • /
    • 2013
  • This paper presents a neural net type process model for enhancing learning compensation function in hot strip finishing rolling mill. Adequate input and output variables of process model are chosen, the proposed model was designed as single layer neural net. Equivalent carbon content, strip thickness and rolling speed are suggested as input variables, and looper's manipulation variable is proposed as output variable. According to simulation result using process data to show the validity of the proposed process model, neural net type process model's outputs give almost similar data to process output under same input conditions.

A Design of Content-based Metric Learning Model for HR Matching (인재매칭을 위한 내용기반 척도학습모형의 설계)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.6
    • /
    • pp.141-151
    • /
    • 2020
  • The job mismatch between job seekers and SMEs is becoming more and more intensifying with the serious difficulties in youth employment. In this study, a bi-directional content-based metric learning model is proposed to recommend suitable jobs for job seekers and suitable job seekers for SMEs, respectively. The proposed model not only enables bi-directional recommendation, but also enables HR matching without relearning for new job seekers and new job offers. As a result of the experiment, the proposed model showed superior performance in terms of precision, recall, and f1 than the existing collaborative filtering model named NCF+GMF. The proposed model is also confirmed that it is an evolutionary model that improves performance as training data increases.

Development and Implementation Effect of a Learning Consulting Model Based on Creative Problem Solving for University Students (대학생을 위한 창의적 문제해결 기반 학습컨설팅 모형 개발 및 적용효과)

  • Jung, Se Young;Kim, Jungsub
    • (The) Korean Journal of Educational Psychology
    • /
    • v.32 no.1
    • /
    • pp.1-27
    • /
    • 2018
  • The proposes of this study were to develop the learning consulting model based on creative problem solving and to verify the effects of its implementation. The model was developed based on ADDIE program developing model. In the analysis stage, literature review and needs survey were conducted for data collection on learning consulting at universities including the literature in related fields. Specific areas needed in the learning consulting model were selected from the results of this collected data. During the design and development stage, the learning consulting processes were established. These constituted the learning consulting model developed and it had been based on the Creative Problem Solving. To verify the validity of the learning consulting model based on the creative problem solving, a pilot study was implemented. The model was completed content a validity verification process performed by experts through focus group interviews. The aim this final model is to improve the self-directed learning ability and creative problem solving capacity of the university students. The study results showed that mean scores on self-directed learning ability of the experimental group increased significantly compared to the control group. Based on these findings, the learning consulting model seemed very effective in improving the university students' self-directed learning ability, as well as their creative problem solving capacity. Based on the results of this study, implications and limitations of the final model and its implementation were discussed.

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..

Transfer-learning-based classification of pathological brain magnetic resonance images

  • Serkan Savas;Cagri Damar
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.263-276
    • /
    • 2024
  • Different diseases occur in the brain. For instance, hereditary and progressive diseases affect and degenerate the white matter. Although addressing, diagnosing, and treating complex abnormalities in the brain is challenging, different strategies have been presented with significant advances in medical research. With state-of-art developments in artificial intelligence, new techniques are being applied to brain magnetic resonance images. Deep learning has been recently used for the segmentation and classification of brain images. In this study, we classified normal and pathological brain images using pretrained deep models through transfer learning. The EfficientNet-B5 model reached the highest accuracy of 98.39% on real data, 91.96% on augmented data, and 100% on pathological data. To verify the reliability of the model, fivefold cross-validation and a two-tier cross-test were applied. The results suggest that the proposed method performs reasonably on the classification of brain magnetic resonance images.

An Effective Data Model for Forecasting and Analyzing Securities Data

  • Lee, Seung Ho;Shin, Seung Jung
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.32-39
    • /
    • 2016
  • Machine learning is a field of artificial intelligence (AI), and a technology that collects, forecasts, and analyzes securities data is developed upon machine learning. The difference between using machine learning and not using machine learning is that machine learning-seems similar to big data-studies and collects data by itself which big data cannot do. Machine learning can be utilized, for example, to recognize a certain pattern of an object and find a criminal or a vehicle used in a crime. To achieve similar intelligent tasks, data must be more effectively collected than before. In this paper, we propose a method of effectively collecting data.

Effect of Input Data Video Interval and Input Data Image Similarity on Learning Accuracy in 3D-CNN

  • Kim, Heeil;Chung, Yeongjee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.208-217
    • /
    • 2021
  • 3D-CNN is one of the deep learning techniques for learning time series data. However, these three-dimensional learning can generate many parameters, requiring high performance or having a significant impact on learning speed. We will use these 3D-CNNs to learn hand gesture and find the parameters that showed the highest accuracy, and then analyze how the accuracy of 3D-CNN varies through input data changes without any structural changes in 3D-CNN. First, choose the interval of the input data. This adjusts the ratio of the stop interval to the gesture interval. Secondly, the corresponding interframe mean value is obtained by measuring and normalizing the similarity of images through interclass 2D cross correlation analysis. This experiment demonstrates that changes in input data affect learning accuracy without structural changes in 3D-CNN. In this paper, we proposed two methods for changing input data. Experimental results show that input data can affect the accuracy of the model.