• Title/Summary/Keyword: Leading edge flap

Search Result 26, Processing Time 0.021 seconds

Aerodynamics of a 2-D Flat-plate Airfoil with Tripwire (2차원 평판날개에서의 Tripwire가 공력에 미치는 영향)

  • Je, Du-Ho;Lee, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.575-581
    • /
    • 2013
  • In this paper, we experimentally investigated the effects of attached cylindrical tripwires on the aerodynamic performance. The research was carried out with a simple two-dimensional (2-D) rectangular airfoil fabricated from thin flat-plate aluminium, with elliptical leading and trailing edges. Tripwires of varying widths and thicknesses, and attack angles of $-5^{\circ}{\sim}20^{\circ}$ were used to investigate the aerodynamic characteristics (e.g. lift and drag forces) of the airfoil. We found that attaching the tripwires to the lower surface of the airfoil enhanced the lift force and increased the lift-to-drag ratio for low attack angles. However, attaching the tripwires to the upper surface tended to have the opposite effects. Moreover, we found that attaching the tripwires to the trailing edge had similar effects as a Gurney flap. The aerodynamic characteristics of the flat-plate airfoil with tripwires can be used to develop passive control devices for aircraft wings in order to increase their aerodynamic performance when gliding at low attack angles.

ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF THE MAIN WING SECTION OF KC-100 AIRCRAFT (KC-100 항공기 주날개의 결빙에 의한 공력 영향성 연구)

  • Lee, C.H.;Sin, S.M.;Jung, S.K.;Myong, R.S.;Cho, T.H.;Jung, J.H.;Jeong, H.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.464-467
    • /
    • 2010
  • Ice accretion on aircraft surface in icing condition induces external shape changes that may result in a hazard factor for aircraft safety. In case of aircraft main wing with high lift equipment, ice accretion is observed around leading edge and flap. During the design phase, location of ice accretion and associated aerodynamic characteristics must be investigated. In this study, icing effects on aerodynamic characteristics of the main wing section of KC-100 aircraft are investigated using an Eulerian-based FENSAP-ICE code in various icing conditions.

  • PDF

Improvement of Paraglider by Using Axiomatic Approach (공리적 접근법을 이용한 패러글라이더 성능 개선에 관한 연구)

  • 류상우;차성운;임웅섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.719-722
    • /
    • 2001
  • Paraglider has been used for a good air sports instrument by many people in the world though its short history. And manufacturers have improved it continuously. It has the great growth from the first model like parachute to the latest model that has the extreme speed, but we can improve it in more parts. In this paper, we will show the method which can improve its performance by using Axiomatic Approach.

  • PDF

Improvement of Lift Dump on a Fighter-Type Wing at Approach Condition

  • Hwang, Soo-Jung;Lee, Il-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.33-45
    • /
    • 2005
  • The 1/9-scale model of a fighter-type configuration was tested in the Micro-Craft 8ft ${\times}$ 12ft wind tunnel facility. An abrupt lift dump was found at a certain range of angle of attack under the pre-scheduled approach configuration. To avoid a probable unsatisfactory flight behavior due to the lift dump, various aerodynamic devices were suggested. Extensive tests applying the cutoff leading edge flaps, boundary layer fences, saw tooth and vortex generators were performed with flow visualization as well as force and moment measurements. Test results showed that the origin of the lift dump was caused by the secondary boundary layer flow separation generated from the strong interaction between wing and flap. Various solutions for avoiding the unfavorable feature were suggested with the merits and demerits.

Incompressible/Compressible Flow Analysis over High-Lift Airfoils Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim C. S.;Kim C. A.;Rho O. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.53-61
    • /
    • 1999
  • Two-dimensional, unsteady, incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. The compressible code involves a conventional upwind-differenced scheme for the convective terms and LU-SGS scheme for temporal integration. The incompressible code with pseudo-compressibility method also adopts the same schemes as the compressible code. Three two-equation turbulence models are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by predicting the flow around the RAE 2822 transonic airfoil and the NACA 4412 airfoil, respectively. In addition, both the incompressible and compressible code are used to compute the flow over the NLR 7301 airfoil with flap to study the compressible effect near the high-loaded leading edge. The grid systems are efficiently generated using Chimera overlapping grid scheme. Overall, the κ-ω SST model shows closer agreement with experiment results, especially in the prediction of adverse pressure gradient region on the suction surfaces of high-lift airfoils.

  • PDF

Aeroelastic Stability Analysis of Bearingless Rotors with Composite Flexbeam in Hover (복합재 유연보를 갖는 무베어링 로우터 시스템의 정지 비행시 공탄성 안정성 해석)

  • Lim, In-Gyu;Choi, Ji-Hoon;Lee, In;Han, Jae-Hung
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.29-37
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube. The outboard main blade, flexbeam and torque tube are all assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections, which are discretized into beam finite elements. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory is used for aerodynamic computation. The finite element equations of motion for beams are obtained from Hamilton's principle. The p-k method is used to determine aeroelastic stability boundary. Numerical results are presented for selected bearingless rotor configurations based on the lay-up of laminae in the flexbeam and pitch links location. A systematic study is made to identify the importance of the stiffness coupling terms on aeroelastic stability for various fiber orientation and for different configuration.