• Title/Summary/Keyword: Leading Edge Suction Method

Search Result 19, Processing Time 0.03 seconds

Dynamic Behavior of Vortices Separated from a Pitching Foil (피칭익에서 박리되는 와류의 거동)

  • Yang, Chang-Jo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.152-158
    • /
    • 2007
  • Most of experimental visualizations and numerical results on the flow field separated form a leading edge around an unsteady foil show a continuous streakline from the leading edge and large reverse flow between the streakline and the suction surface. However, they have not exactly clarified yet the dynamic behavior of vortices separated from the leading edge because separation around an unsteady foil is very complicated phenomenon due to many parameters. In the present study the flow fields around pitching foils have been visualized by using a Schlieren method with a high speed camera in a wind tunnel at low Reynolds number regions. It has been observed that small vortices are shed discretely from the leading and trailing edge and that they stand in line on the integrated streakline of separation shear layer. By counting vortices in the VTR frames it was clarified that the number of vortex shedding from the leading and trailing edge during one pitching cycle strongly depends on the non-dimensional pitching rate. Futhermore the vortices moving up to the leading edge on the suction surface of the pitching foil are visualized. They play an important role to balance the number of vortex shedding from both edges.

A Study on Tool Path Generation for Machining Impellers with 5-Axis Machining Center (5축 Machining Center를 이용한 임펠러 가공을 위한 공구경로 생성에 관한 연구)

  • 장동규;조환영;이희관;공영식;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes a tool path generation method for machining impellers with 5-axis machining center. The shape of impeller is complex, being composed of pressure surface, suction surface and leading edge, and so on. The compound surface which is made of ruled surface such as pressure surface and suction surface and leading edge such as fillet surface, makes the tool path generation much complicated. To achieve efficient roughing, cutting area is divided into two region and then tool radius of maximum size that do not cause tool intereference is selected for shortening machining time. In finishing, accuracy is improved using side cutting for blade surface and point milling for leading edge.

Vortical Flows over a LEX-Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2273-2283
    • /
    • 2004
  • The vortical flows over sharp-edged delta wings with and without a leading edge extension have been investigated using a computational method. Three-dimensional compressible Reynolds-averaged Navier-Stokes equations are solved to provide an understanding of the effects of the angle of attack and the angle of yaw on the development and interaction of vortices and the aerodynamic characteristics of the delta wing at a freestream velocity of 20 m/s. The present computations provide qualitatively reasonable predictions of vortical flow characteristics, compared with past wind tunnel measurements. In the presence of a leading edge extension, a significant change in the suction pressure peak in the chordwise direction is much reduced at a given angle of attack. The leading edge extension can also stabilize the wing vortex on the windward side at angles of yaw, which dominates the vortical flows over yawed delta wings.

Reverse Engineering and 5-axis NC machining of impeller (임펠러의 역공학과 5축가공)

  • 신재광;홍성균;장동규;이희관;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1795-1798
    • /
    • 2003
  • This paper presents a method for impeller modeling by the reverse engineering and the 5-axis machining. The impeller is composed of pressure surface, suction surface and leading edge, and so on. The impeller is modeled by using the characteristic curves of impeller such as hub curves, shroud curves and leading edge. The characteristic curves are extracted from the scanned data. The hub curves and shroud curves are generated by intersection between blade surface and hub boundary and shroud boundary. respectively. A sample impeller machining is performed by tool path plan and post-processing with inverse kinematic solution.

  • PDF

3-D Dynamic Visualization by Stereoscopic PIV

  • LEE Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.15-23
    • /
    • 2004
  • The present study is aimed to achieve dynamic visualization from the in-house 3-D stereoscopic PIV to represent quantitative flow information such as time-resolved 3-D velocity distribution, vorticity, turbulent intensity or Reynolds stresses and so on. One of the application of the present study is Leading edge extension(LEX) flow appearing on modern delta wing aircraft. The other is mixing flow in stirring tank used in industry field. LEX in a highly swept shape applied to a delta wing features the modern air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present method resolves also the complicated flow patterns of two type impellers rotating in stirring vessel. Flow quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing visualization. And it makes the easy understanding of the unsteady flow characteristics of the typical industrial mixers.

  • PDF

Performance Evaluations for the Partial-Admission Type Turbine System (부분흡입노즐방식의 터빈시스템에 대한 성능 평가)

  • 홍창욱;박승경;남궁혁준;김경호;김영수;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.11-14
    • /
    • 2001
  • 3-D compressible flow analysis was conducted by using mixing plane method for turbine system which is consisted of partial admission nozzle and rotor. Computational results are shown oblique shock wave in blade leading and trailing edge and also shown flow separation along suction surface of blade due to abrupt blade curvature. But computational results are well agree with 1-D calculation results and experimental data.

  • PDF

Cavitating Flow Analysis of Multistage Centrifugal Pump (다단 원심펌프의 공동현상 유동해석)

  • Rakibuzzaman, Rakibuzzaman;Suh, Sang-Ho;Kim, Hyoung-Ho;Cho, Min-Tae;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • The purpose of this study is to investigate cavitating flow of the multistage centrifugal pump. Cavitation is observed in the impeller leading edge and trailing edge of the suction area. Head coefficients are measured under different flow operating conditions. The Rayleigh-Plesset cavitation model is adapted to predict the occurrence of cavitation in the pump. The two-phase gas-liquid homogeneous CFD method is used to analyze the centrifugal pump performances with two equation transport turbulence model. The simulations are carried out with three different flow coefficients such as 0.103, 0.128 and 0.154. The occurrence of cavitation described according to water vapor volume fraction. The head versus NPSH (Net Positive Suction Head) also measured using different flow coefficients. Development of cavitation in the centrifugal pump impellerI is discussed. It is showed that the simulation represents the head drop about 3%.

Detailed Measurement of Heat/Mass Transfer in a Rotating Equilateral Triangular Channel with Smooth Walls (회전하는 매끈한 정삼각 유로 내 열/물질전달 분포 측정)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.628-634
    • /
    • 2007
  • The present study investigated the heat/mass transfer characteristics in an equilateral triangular channel simulating the leading edge cooling passage in gas turbine blade. Using naphthalene sublimation method and pressure measurement experiments, local mass (heat) transfer and pressure coefficients were obtained. The experiments were conducted with three rotating numbers between 0.0 and 0.1; two channel orientations of $0^{\circ}$ (model A) and $30^{\circ}$ (model B); the fixed Reynolds number of 10,000. The results showed that the channel rotation caused the heat transfer discrepancy between suction and pressure sides. Due to the secondary flow induced by Coriolis force, the high heat transfer appeared on the pressure side. When the channel orientation was $30^{\circ}$ (model B), the secondary flow caused the more uniform heat transfer distribution among leading edge and inner wall on pressure side than that of the model A.

A Study on the Theoretical Calculation of Screw Propeller Open-Water Characteristics (프로펠러 특성의 이론적 산정법에 관한 연구)

  • 송강섭
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.3
    • /
    • pp.15-33
    • /
    • 1990
  • In recent years, propellers with various blade configurations such as highly skewed propellers are often fitted to ships from the viewpoint of reduction of vibration and noise. In the design of such propellers, design charts based on methodical series tests are to be complemented by theoretical calculations for accurate estimation of propeller open-water characteristics. The author intended to develop a method to estimate propeller open-water characteristics based on Quasi -Vortex - Lattice Method originally developed by Lan for solving planar thin wings, The Quasi - Vortex - Lattice Method has the simplicity and flexibility of Vortex - Lattice Method. Its accuracy is comparable to that of the Vortex - Lattice Method. Converged solution can be obtained with a small number of control points and further, leading edge suction force can be calculated directly. In the present paper, a numerical method to estimate propeller open-water characteristics based on the Quasi - Vortex - Lattice Method is reviewed and its application to marine propellers is described in detail. Comparison of propeller open-water characteristics obtained by the present method with experimental data showed good agreement for a wide variety of propellers including highly skewed propellers.

  • PDF

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.