• Title/Summary/Keyword: Lead Lag

Search Result 197, Processing Time 0.036 seconds

On the Design of an Effective Lead/Lag Controller for DC Motors (직류모터를 위한 효과적인 Lead/Lag 제어기 설계에 관한 연구)

  • Kim, Wang-Sun;Lee, Byoung-Hoon;Won, Dae-Ho;Yang, Yeon-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.959-962
    • /
    • 2010
  • There are a lot of methods available in designing PID(Proportional-Integral-Derivative) and Lead/Lag controllers in the industrial field of technology because of their useful advantages such as simplicity and robustness. In an early stage of development process, a computational simulation approach is a very efficient tool for the designs of the controllers. Thus, in this paper we propose a cost-effective, and practically efficient. The PID and Lead/Lag controllers. To show the effectiveness of the proposed Lead/Lag controller, we compare and contrast of the simulation results of each controller with the Matlab simulator. Although we have only considered the DC motors for the controllers, but it could be extended in future developments to more complex plants. As a result, the proposed frameworks could be used to solve industrial problems such as a reduction in development cycle time and minimizing system errors.

  • PDF

Stability Criterion of Repetitive Control System Using Phase-Lead and Lag Compensator (진상,지상 보상기를 고려한 반복제어계의 안정성 판별)

  • 서진호;강병철;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.41-45
    • /
    • 1997
  • To design a control system, it is a elementary point that the stability of the system should be guaranteed. Also, the phase of the system plays an important role for its frequence performance. In this paper, we present two stability criterion of repetitive control system with phase-lead and lag compensator. First, the stability criterion for the servo control system with phase-lead and lag compensator is shown by using small-gain theorem. Second, for the repetitive control system with the compensator, the stability criterion, also, is determined by using small-gain theorem. Two stability criterions show the same results that the stability depends on a coefficient of the phase-lead and lag compensator under some condition in servo control system and repetitive control system.

  • PDF

Aerodynamic Analysis of a Rectangular Wing in Flapping with Lead-Lag Motion using Unsteady VLM (직사각형 평판날개의 리드래그 운동이 조합된 날개짓에 대한 비정상 VLM 공력 해석)

  • Kim, Woo-Jin;Kim, Hark-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • The unsteady vortex lattice method is used to model lead-lag in flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various lead-lag motion and reduced frequency with an amplitude of flapping angle(20o). To describe a motion profile of wing tip such as elliptic, line and circle, the phase difference of flapping and lead-lag motion was changed. And the effects of the motion profile on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

  • PDF

Lie Group Theory based Lead-Lag Power System Stabilizer (Lie Group Theory에 기준한 Lead-Lag 전력계통안정화장치)

  • Lee, Sang-Seung;Li, Shan-Ying;Park, Jong-Keun;Moon, Sung-Il;Yoon, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.183-186
    • /
    • 2004
  • 본 논문에서는 Lie Group 및 Lie Transformation의 수학적인 근원을 분석하고 이를 비선형 제어기에 제공하였다. 제어기의 구성형태는 Lead-Lag와 LQR 관측기를 결합한 혼합형 비선형 전력계통안정화장치(NPSS)이다. 이 분석에 사용된 제어기는 첫째로 기존의 PSS type인 Lead-Lag 형태의 선형화 제어기이다. 둘째로 제안된 제어기는 Lie group theory를 적용하여 이를 상태변수에 반영한 Lead-Lag와 LQR 관측기를 결합한 것이다. 제안된 혼합형 비선형 전력계통안정화장치(NPSS)의 효과분석은 MATLAB을 이용하였다. 분석모델은 1기 4차 비선형 전력계통의 모델에 적용하였다.

  • PDF

Ground Resonance Instabilities Analysis of a Bearingless Helicopter Main Rotor (무베어링 헬리콥터 로터의 지상공진 불안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.352-357
    • /
    • 2012
  • The ground resonance instability of a helicopter with bearingless main rotor hub were investigated. The ground resonance instability is caused by an interaction between the blade lag motion and hub inplane motion. This instability occurs when the helicopter is on the ground and is important for soft-inplane rotors where the rotating lag mode frequency is less than the rotor rotational speed. For the analysis, the bearingless rotor was composed of blades, flexbeam, torque tube, damper, shear restrainer, and pitch links. The fuselage was modeled as a mass-damper-spring system having natural frequencies in roll and pitch motions. The rotor-fuselage coupling equations are derived in non-rotating frame to consider the rotor and fuselage equations in the same frame. The ground resonance instabilities for three cases where are without lead-lag damper and fuselage damping, with lead-lag damper and without fuselage damping, and finally with lead-lag damper and fuselage damping. There is no ground resonance instability in the only rotor-fuselage configuration with lead-lag damper and fuselage damping.

A Numerical Study on Aerodynamic Characteristics for Cyclic Motion Profile of Flapping Airfoil (Flapping Airfoil의 2차원 운동궤적에 따른 공력특성연구)

  • Jeong, Won-Hyeong;An, Jon;Lee, Gyeong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.6-13
    • /
    • 2006
  • Aerodynamic characteristics for two-dimensional cyclic motion profile of flapping airfoil in low Reynolds number flows are investigated. Plunging motion and lead-lag motion in the two dimensional space with different plunging and lead-lag amplitudes are combined to cyclic motion profile and the flow around the airfoil is simulated. Present result shows that the improved aerodynamic efficiencies for a given flapping airfoil by adding periodic lead-lag motion of airfoil rather than the pure plunging case. The thrust coefficient and lift coefficient are compared with each cycle during the flapping period and aerodynamic characteristics are obtained on upstroke motion and downstroke motion.

Evaluation of Withdrawal Resistance of Screw-Type Fasteners Depending on Lead-Hole Size, Grain Direction, Screw Size, Screw Type and Species

  • LEE, Hyung Woo;JANG, Sang Sik;KANG, Chun-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.181-190
    • /
    • 2021
  • Screw-type fasteners are widely used to make connections between wood members or between wood and steel connectors because they can tolerate the applied loads by withdrawal or shearing. In this study, we evaluated the withdrawal resistances of the screw-type fasteners and analyzed the effects of the lead-hole size, relative grain direction (tangential, radial, and cross-sections) of the wood member, screw diameter, screw type, and species. Two wood species, including domestic larch and imported spruce, and three screw-type fasteners, including domestic lag screws (diameters of 9.46, 7.79, and 6.27 mm), domestic tapping screw (diameter, 6.3 mm), and imported Sherpa screw (diameter, 8.0 mm) were used. To assess the effect of lead-hole size, the lead holes with diameters corresponding to 68.7%, 70.8%, and 74.0% of the shank diameter of the lag screw were predrilled. The lead hole corresponding to 74% of the shank diameter was selected for this study because the smaller lead holes required higher rotational force for installation, which may cause damage in the screw neck, although there was no significant difference in the withdrawal resistance depending on the lead-hole sizes applied in this study. The lag screws installed on the tangential and radial surfaces showed similar withdrawal resistances to each other, which were greater than those installed on the cross-sectional surface. As the lag screw diameter increased from 6.27 mm to 9.46 mm, the withdrawal resistance also increased proportionally. The withdrawal resistance of the tapping screw having a diameter of 6.3 mm was almost 1.6 times higher than that of the lag screw having a similar diameter of 6.27 mm, while that of Sherpa screw having a diameter of 8.0 mm was around 1.4 times higher than that of the lag screw having a similar diameter of 7.79 mm.

A study on the compensator design of the quasi-resonant SMPS (유사공진형 SMPS의 보상기 설계에 관한 연구)

  • Lim, I.S.;Huh, U.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.720-725
    • /
    • 1991
  • In this thesis, the lead-lag compensator is designed to improve output characteristics of flyback zero voltage switching quasi-resonant converters. The switch and the diode are assumed ideally. And the SMPS is modelled by state equations with four operation modes. And the model for controller design is also achived by using a state space averaging method, which is continuous time average of state variables every period. The lag, the lead and the lead-lag compensator is designed the SMPS respectively. The time domain analysis and the frequency domain analysis are done for each compensated circuit. It is possible increasing the phase margin and improving the transient response by the compensators. The phase lag compensator has small overshoot comparatively. But the bandwidth is narrower than the others, so it has longest settling time. For the phase lead compensator, the response come to steady-state within short period. But the overshoot is the largest due to its large peak gain. Finally, the phase lead-lag compensator has medium characteristics in the overshoot and the settling time.

  • PDF

Design of Nonlinear Lead and/or Lag Compensators

  • Nassirharand, Amir;Firdeh, Seyed Reza Mousavi
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.394-400
    • /
    • 2008
  • A known nonlinear compensator design approach is adapted to allow design of nonlinear lead and/or lag compensators, and a number of MATLAB functions are developed that automate the compensator design procedure. With this design tool, control engineers would be able to rapidly design nonlinear lead and/or lag compensators. An example of a tutorial nature is presented.

Development of Vehicle Driver Model For Virtual Driving Test (가상주행시험을 위한 차량 운전자 모델 개발)

  • Lee, Hong-ki;Chun, hyung-ho;Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.273-280
    • /
    • 2001
  • In this study, a driver model based on the lead-lag controller for stable maneuver of a highly nonlinear, multi-dimensional, numerically stiff multibody vehicle model according to the various handling test requirements such as steady-state cornering, double lange change, etc. is presented The lead-lag controller is developed with lead and lag compensation. which use the transfer function with cross-over frequency by frequency response method. The proposed driver model is applied to a vehicle model in steady-state and slalom maneuver to verify its effectiveness and validity. The results show that the proposed path control strategy is excellent both in pursuing the desired course and stability of the vehicle.

  • PDF