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Design of Nonlinear Lead and/or Lag Compensators

Amir Nassirharand and Seyed Reza Mousavi Firdeh

Abstract: A known nonlinear compensator design approach is adapted to allow design of
nonlinear lead and/or lag compensators, and a number of MATLAB functions are developed that
automate the compensator design procedure. With this design tool, control engineers would be
able to rapidly design nonlinear lead and/or lag compensators. An example of a tutorial nature is

presented.
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1. INTRODUCTION

Methods for design of linear lead and/or lag
compensators for linear plants have received
considerable attention (see [1] and references therein).
In many cases, a linear lead and/or lag compensator
designed on the basis of a linear model does not
produce adequate level of robustness over a wide
variety of operating regimes, especially if the plant is
highly nonlinear. Note that operating regimes, unlike
operating points, are characterized by expected range
of amplitudes and frequencies of excitation.

There is a limited literature on design of nonlinear
lead/lag compensators [2-4]. A general describing
function based approach for design of nonlinear
compensators (PID, lead/lag, ...) is outlined in [2].
Then, in [3] the approach for design of nonlinear PID
compensators is developed; the corresponding
MATLAB routines are developed in [5]. Later in [4]
three approaches (one of which is basically the
approach outlined in [3]) are presented for design of
nonlinear lead/lag compensators. In this work, the
nonlinear controller design approach of [3] and [6] is
adapted to allow design of nonlinear lead/lag
compensators, and a computer-aided design approach
is developed; no use of M-circles is made. One of the
advantages of this approach (unlike previous works) is
that allows inversion of nonlinearities with memories.

In this research, a multi-range and computer-aided
nonlinear lead and/or lag compensator design
technique is presented. The approach is based on
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several describing function (DF) models of the
nonlinear plant at various operating regimes, and the
amplitude dependent gains of the compensator are
obtained by application of a new describing function
inversion technique [7]; for alternative approaches for
inverting memory-less nonlinearities see [3,4,6-11].
The method of design has no restriction on
nonlinearity type, configuration, arrangement, and
system order. There is no assumption that only single-
valued nonlinear terms are considered. The design
results in a nonlinear closed-loop system whose
dynamic behavior is insensitive to various operating
regimes of interest. The primary contribution of this
work is the demonstration that approaches of [3] and
[6] are also applicable to design of nonlinear lead
and/or lag controllers.

2. DESCRIBING FUNCTIONS

Describing functions have been used to analyze and
diagnose nonlinear systems [12-14]. However, there is
a body of literature in the past two decades that
successfully uses DF in order to design robust
nonlinear feedback systems [2-11,14-18]. Generally
speaking, sinusoidal-input describing function (SIDF)
models are used for the following reasons: (1) to
capture the amplitude dependency of the original
nonlinear plant, (2) to characterize the dependency of
the nonlinear plant on the expected range of
frequencies of interest, (3) to have strong basis for a
robust design as the dependency of the nonlinear plant
on the amplitudes of excitation is an important issue
in design of robust nonlinear closed-loop systems, (4)
to achieve robust stable closed-loop systems without
sacrificing performance, (5) to characterize the
behavior of the nonlinear plant only by one parameter
which is the amplitude of excitation; hence, design is
much simpler and restrictive than if the design is
based on several parameters that are obtained by
replacing each nonlinear term by a linear gain, and (6)
to allow controller design for nonlinear plants with
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discontinuous or multi-valued nonlinear terms: in
such cases, small signal linear models do not exit.
SIDF models may be obtained by a procedure
similar to that used in limit cycle analysis; in this
approach each nonlinearity term is replaced by a
quasi-linear term, and a set of nonlinear algebraic
equations, that correspond to harmonic balance, are
solved to determine the parameters of the quasi-linear
term [2]. This method assumes that input to each
nonlinear term is nearly sinusoidal. Such assumption
may be removed if the SIDF models are obtained by

direct simulation and evaluation of Fourier integrals
as outlined in [3].

Consider the following class of nonlinear systems.

x(1) =/ (xu.1), (1)
y(1)=g(xut), (2)

where, x e R"is the vector of state variables, u ¢ R

is the input, y e R' is the output, and ¢ is the time

variable. The stable plant is excited by a sinusoid of
the following form.

u(t)=uy +acos(wt), (3)

where uis the input to the plant, uis the DC value

of the input, ais the amplitude of the excitation, and
@ 1s the frequency of excitation. The equations of
motion are numerically integrated to obtain the output
y(¢). Once the output reaches steady state, the

Fourier integrals for period k are evaluated; these
integrals are of the following form.

»

kT :
— — Jmat
Lux = | oy ()Tt (3)
where £=1,2,3, --- is the period index, m=0,1,
2, --- 1s the harmonic index, and T =27/® is the

period. [, is the constant or DC component of the

and the harmonic dependent transfer
functions, G,,,, are given by the following relation.

response,

Gk (jmw; ug,a) =wl,, ;. /ar. (4)

The first harmonic SIDF models are given by G ;.

This procedure for generation of SIDF models of a
nonlinear plant is automated by a MATLAB function.
The MATLAB function [19] that is used to generate
the SIDF models of multivariable nonlinear plants
may be adapted to automate the generation of the
SISO SIDF models. See [19] for printout of the SIDF
generation software.

3. MAIN DEVELOPMENTS

The problem statement is to design a nonlinear lead

Reference

Nonlinear | | Nonlinear Output
Lead andforLag| | Plant

Fig. 1. The structure of the considered nonlinear
feedback system.

and/or lag compensator for a nonlinear plant in a unity
feedback configuration such that the resulting closed-
loop system would be as insensitive to the amplitude
level of the excitation command as possible. The
structure of the considered nonlinear feedback system
is depicted in Fig. 1.

The class of considered nonlinear plants is SISO
with no other restrictions on the nonlinear plant;
however, if higher than first harmonic effects are
pronounced, then, adequate low pass filtering should
be introduced. The considered nonlinear compensator
is of a lead and/or lag type whose parameters are
functions of the amplitude levels of the error signal.

The design procedure is composed of six steps, and
they are basically the same as that developed in [3]
with noted minor differences.

1. Generate the SIDF models for the user defined

amplitude set {a;} and the frequency set {w;}

as was outlined in the previous section.
2. Select one of the SIDF models of the previous step

as the nominal model, G (jo, a ), and design a

lead and/or lag compensator denoted C (jw). In

this research, the invfreqs function of MATLAB is
used to identify a linear model for the nominal
SIDF model followed by application of the
MATLAB function described in [1] to obtain

C’ (jw). There is no selection rule. If a different

model is selected, then 1dentical results would be
obtained. The only difference would be a small
difference in the desired open-loop model of Step
3, and therefore, a small difference in final results
would be expected. But as long as the
performance measures are satisfied in this Step,
then the final results would also be satisfactory.

3. Generate the open-loop SIDF model of the system

with the
nonlinear plant; note that excitation signal would

comprised of C*( jw) 1n series

be of the form e(r):e* cos(wt), and e is
consistent with a :

e =d /|C.

cao

: (5)

#*
where |C,,

is the gain of the nominally

designed compensator at the phase cross-over
frequency.
4. Design a set

of linear lead and/or Ilag
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compensators at various operating regimes of
interest that mimic the desired open-loop behavior

obtained in the previous section. This is
accomplished by minimizing the following
objective function.

|G Gw,e)
E(jo)= (6)

FGU@G .6 |G (jo))|

The major problem with this step is that software
for generation of SIDF models must be placed
inside an optimization routine to evaluate the
open-loop frequency response at each iteration.
This will result in an unreasonable execution time
for this step. In order to lift this restriction,

G(]Co: €;

Cl-( jco)') 1s evaluated by using the

G(jw,a;) data of Step 1

interpolation. This will allow one to execute this
step with standard available personal computers.
The output of this step is a set of values for the
parameters of the lead and/or lag compensator at
various operating regimes of interest. These
amplitude dependent parameters are treated as
describing function models of the desired
nonlinear gains of the nonlinear compensator.

5. Determine a set of nonlinear functions whose DF
models mimic the DF models of the compensator
parameters that were determined in the previous
step. A typical nonlinear function, that user may
select, is shown in Fig. 2.

The parameters of this function are determined in
such a manner that the function DF model
approximates the amplitude dependent gains of
the compensator parameters at various operating
regimes of interest. Such a function will allow for
high gains at low amplitudes, constant gains at

coupled with

-~

N_@nl‘in;ezarfﬁFu n-ctif@_n. @utp_utf

Fig. 2. The candidate nonlinear function that is used
in the describing function inversion process.

specific amplitude ranges, and gain reductions or
jumps at specific amplitudes. Note that this step is
the inverse of activities of Step 1. In Step 1, the
model is available and the SIDF models are to be
obtained; in this step, the SIDF models are known,
and the nonlinearity model must be obtained. In
order to determine the parameters of the
nonlinearity  function shown in Fig. 2,
optimization is used, and the fminsearch function
of the MATLAB software is utilized. The details
of this inversion process are: (a) use the describing
function generator MATLAB function [19] and
generate the describing function model of the
nonlinearity, (b) if satisfactory results are obtained,
then stop; otherwise, use fminsearch function of
the MATLAB in order to modify the independent
variables and go to (a).

6. Finally, the closed-loop system at wvarious
operating regimes of interest is simulated to verify
design. Additionally, in order to quantify the
amount of achieved reduction in sensitivity the
followings are numerically evaluated.

_ ) 1_ Gz'(ja)ﬂaf) d : 7
70 Zz:{'[”l G (jo,a) ? "

_ o) T(Cyr, NL)| , g
7 Z{I@ [y N ®

where G, (jw,a;)1s the SIDF model of the open-loop
nonlinear plant at operating regime i, I;(Cy;,NL;)
is the SIDF model of the open-loop system comprised
of the nonlinear controller, Cy;, and the nonlinear
plant at operating regime i, NL;,, and r (CNL,NL*)
is the SIDF model of the open-loop system comprised
of the nonlinear controller, Cy;, and the nonlinear
plant at nominal operating regime, NL .

The closer o; (i=0,1) 1s to zero, the smaller is

the level of sensitivity. The percent amount of
reduction in sensitivity would be given by the
following relation.

R=(0y—07)/ 09 x100 9)

The interested reader may obtain a copy of the
developed MATLAB functions that automate the
above procedure by sending an email to the first
author at control727@yahoo.com.

4. TUTORIAL EXAMPLE PROBLEM

Consider the problem of designing a nonlinear lead
compensator for a nonlinear process of the sort
encountered in robotics [6]. The schematic block
diagram of the nonlinear plant considered is depicted
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e

Fig. 3. The schematic block diagram for the tutorial
example problem.

in Fig. 3.

This nonlinear plant is of the sort encountered in
robotics/mechatronics, and it is typical of position
contro} problems that exist in industry. The
mathematical model of the nonlinear plant is given by

(9)-(12).
)'Cl = X2, (9)
%, =T, | J, (10)

where J =0.01 kg-m2 and the servomotor {friction
characteristic includes Coulomb and viscous effects.

rTe_fvi:l _chign(kl) if |Tel>fc:~
T, =< T, — f,% — f.Sign(x) if x 20, (11)
0.0 if |T,|< f, and %, =0,

where f, =0.1Nm-s/rad, f. =1.0Nm, and servo-
motor saturation effects are modeled by

lein if IVmI < 59
Sign(V;,,)-(m& + my |V, = 8)) if [V, > 6.
(12)

T —

€

where

0 =0.5 volts, m =5 Nm/V, and m, =1.0 Nm/V.

The computer model [6] of this process in terms of
a FORTRAN subroutine is given in reference [20],
and it will not be repeated here. The problem
statement is that a feedback system with a nonlinear
lead controller must be designed such that resulting
closed-loop system would be as insensitive to the

amplitude level of the excitation command as possible.

The expected amplitudes of excitation in units of Volts

are 0.25, 0.325, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 30, and 60.

The nonlinear effects are most pronounced at an
excitation of 0.25 or less, and they become less
important at an excitation of 12.8 and higher. The
synthesis procedure is executed as follows.

1. The SIDF models are generated at various
operating regimes of interest as outlined before;
these models are shown in Figs. 4, and 5.

It is apparent that system is highly nonlinear
because the surfaces are not flat. There is a 20 dB

Magnitude, dB
L

Amplitude, Volt | Frequency, radisec

Fig. 4. The magnitude surface of the nonlinear plant.

Phase, Degree

e
10 S
Frequency, radisec 1g9° 15

Amplitude, Volt

Fig. 5. Phase surface of the nonlinear plant.

spread across the magnitude plots, and there is a
60 degrees spread across the phase plots. At small
amplitudes, where stiction effects become
pronounced, phase behavior is not smooth.

2. The middle model (at excitation of 0.325) is

selected as the nominal model; a linear model 1s
identified using invfreqs function of MATLAB,
and the MATLAB function developed in [1] is
used to design a lead compensator. The
compensator gain is adjusted to obtain a
satisfactory step response when the resulting
nonlinear system is simulated. The designed lead
compensator is of the following form.

C* =1.5(0.35145+3.36)/(0.03303s +1) (13

3. The desired open-loop behavior is determined by

obtaining the pseudo frequency response of the
open-loop system comprised of the nominal

compensator, C”, and the nonlinear plant. The

desired open-loop system behavior is shown in
Fig. 6.

This quasi-linear model serves as the objective to
obtain the parameters of the lead compensator at
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Fig. 6. The SIDF model of the open-loop system

comprised of the nominal compensator, C’,
and the nonlinear plant.

various operating regimes that cause insensitivity
of the nonlinear plant to various amplitude levels
of excitation. The target model has approximately
a 30 degrees phase margin and an approximate
gain margin of 3.

4. The set of linear lead compensators at various
excitation amplitudes are obtained as outlined
previously; those are: 4;={6.1141, 5.0390, 4.3959,
3.3293, 3.3834, 5.0765, 5.9311, 6.3986, 6.7062,
6.8369}, A4,={0.6507, 0.6001, 0.5737, 0.5447,
0.7374, 1.0177, 1.1620, 1.2460, 1.3322, 1.1587},
and B;={0.0423, 0.0380, 0.0344, 0.0241, 0.0235,
0.0259, 0.0271, 0.0272, 0.0264, 0.0302}.

The parameters of the lead compensator are
defined as below

C=(A4s+4y)/(Bs+1). (13)

The constants are nonlinear function of the error
signal: (a) for a given value of the error signal, the
nonlinearities (obtained in Step 5) are evaluated
and this gives a set of constants, (b) the values
obtained in (a) are divided by error value, and (c)
the values obtained in (b) sit in place of the lead
and/or lag coefficients and the resulting controller
is excited by the error signal.

5. With reference to Fig. 2, the parameters of the
synthesized nonlinear functions for compensator
parameters are defined in Table 1.

The quality of fit is shown in Figs. 7-9. These
figures show the results of DF inversion process

for Ay, A;, and B;. The nonlinearity parameters

are optimized in a fashion that DF model of that
nonlinearity mimics the desired amplitude
dependent gains of the compensator parameters.

6. Finally, the design is verified using numerical

Table 1. Parameters of the synthesized nonlinear

functions.
o) 9y dy dy
Ay 0.1486 0.2811 0.1822 0.1452
A 0.1762 0.5761 0.0079 0.1111
B, 0.0583 0.2373 0.0006 -0.0001
ds y my ™3
A 0.3085 1.4951 1.1223 6.9811
4 0.3338 0.4475 0.4105 1.2591
By 0.0005 0.0282 0.0168 0.0286
" 5
8.5 -
6]
< 55| | — DF offitted nonlinearity for A,
"E 54 s Desired amplitude dependent model |
8 45
4l
35))
%0 5 10 15

Amplitude, Volt

Fig. 7. The results of describing function inversion
process for Aj.

— DF of fitted nonlinearity for A,

Gain for -A1

oo | o Desired amplitude dependent model -

5 T 15
Amplitude, Volt

Fig. 8. The results of describing function inversion
process for 4.

simulation. The normalized step response plots of
the closed loop system at various operating
regimes of interest are depicted in Fig. 10. This
figure demonstrates the results of design
verification step. The normalized step responses at
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0.045
0.04} |
¥ — DF of fitted nonlinearity for B,
M 0.035 o Desired amplitude dependent model |
2
£
S 003 o
_ O
0.0254 / .

0.02— : ﬁ
0 o 10 15

Amplitude, Volt

Fig. 9. The results of describing function inversion
process for B;.

Normalized Output

0.15 0.2 0.25 : . 0.4

Time, second

Fig. 10. Normalized step-response plots of the

synthesized nonlinear control system.

various amplitudes of reference signals (R1, R2,
R3, ...) indicate that closed loop system behavior
1s fairly insensitive to the amplitude level of the
command signal.

The stability test is shown in Fig. 11. In this figure,
the pseudo frequency response plots of the open-loop
system comprised of the designed nonlinear lead
compensator and the nonlinear process are depicted.
Phase margin is about 30 degrees and the open-loop
pseudo frequency response does not encircle the -1
point at all operating regimes; hence, it may be
concluded that the designed closed loop nonlinear
system would be stable. Also, it is apparent that open-
loop system is fairly insensitive to the amplitudes of
excitations. The legend on the magnitude plot
identifies the amplitudes of the error signals (el, e2,
e3, ...) consistent with the amplitudes of excitations
that define the operating regimes. As was mentioned

in the previous section oy, and o, may be

evaluated to measure the percent reduction in

)
2
m :
= ;
20— ]
10 10 10 10 10
-50 [ |
@
o
o -100f
9 IR
g 150 - .
= i
-200 = . L ) iy
10~ 10 10’ 10 10

Frequency, rad/sec

Fig. 11. Results of stability test.

sensitivity; in this case, oy =2308, o7 =322, and

R=86. In other words, 86percent reduction in
sensitivity is achieved.

5. SUMMARY AND CONCLUSIONS

A computer-aided design procedure for design of
nonlinear lead and/or lag compensators is presented.
The procedure is composed of six steps, and each step
is a functional unit whose output drives the other steps
of the procedure. The procedure is not trial-and-error
free; however, it is considered to be systematic [2].
The areas of trial-and-error are: (1) the original
closed-loop performance measures may have to be
modified since the reference linear lead and/or lag

compensator design (C*) is based on linear or

quasi-linear model of the nonlinear system, (2) the
gain of the designed reference linear compensator
may have to be adjusted to account for nonlinear
effects not accounted for in applying a linear control

theory for design of ol (3) the supplied starting

solution in the inversion process of Step 5 may require
subjective judgment, and this usually results in a few
iterations. For immediate future work it is
recommended to extend the presented design
procedure and the associated software to allow the
design of nonlinear multivariable lead and/or lag
compensators.
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