• Title/Summary/Keyword: Lead Dioxide Sensor

Search Result 6, Processing Time 0.017 seconds

Effectiveness of the Sensor using Lead Dioxide Electrodes for the Electrochemical Oxygen Demand (전기화학적 산소요구량 측정용 이산화납 전극 센서의 유효성)

  • Kim, Hong-Won;Chung, Nam-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.575-581
    • /
    • 2012
  • The electrochemical oxygen demand (ECOD) is an additional sum parameter, which has not yet found the attention it deserves. It is defined as the oxygen equivalent of the charge consumed during an electrochemical oxidation of the solution. Only one company has yet developed an instrument to determine the ECOD. This instrument uses $PbO_2$-electrodes for the oxidation and has been successfully implemented in an automatic on-line monitor. A general problem of the ECOD determination is the high overpotential of electrochemical oxidations of most organic compounds at conventional electrodes. Here we present a new approach for the ECOD determination, which is based on the use of a solid composite electrodes with highly efficient electro-catalysts for the oxidation of a broad spectrum of different organic compounds. Lead dioxide as an anode material has found commercial application in processes such as the manufacture of sodium per chlorate and chromium regeneration where adsorbed hydroxyl radicals from the electro-oxidation of water are believed to serve as the oxidizing agent. The ECOD sensors based on the Au/$PbO_2$ electrode were operated at an optimized applied potential, +1.6 V vs. Ag/AgCl/sat. KCl, in 0.01 M $Na_2SO_4$ solution, and reduced the effect of interference ($Cl^-$ and $Fe^{2-}$) and an expended lifetime (more than 6 months). The ECOD sensors were installed in on-line auto-analyzers, and used to analyze real samples.

High-sensitivity Nitrogen Dioxide Gas Sensor Based on P3HT-doped Lead Sulfide Quantum Dots (P3HT가 도핑된 황화납 양자점 기반의 고감도 이산화질소 가스 센서)

  • JinBeom Kwon;YunTae Ha;SuJi Choe;Soobeen Baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.169-173
    • /
    • 2023
  • With the increasing concern of global warming caused by greenhouse gases owing to the recent industrial development, there is a growing need for advanced technology to control these emissions. Among the various greenhouse gases, nitrogen dioxide (NO2) is a major contributor to global warming and is mainly released from sources, such as automobile exhaust and factories. Although semiconductor-type NO2 gas sensors, such as SnO2, have been extensively studied, they often require high operating temperatures and complicated manufacturing processes, while lacking selectivity, resulting in inaccurate measurements of NO2 gas levels. To address these limitations, a novel sensor using PbS quantum dots (QDs) was developed, which operates at low temperatures and exhibits high selectivity toward NO2 gas owing to its strong oxidation reaction. Furthermore, the use of P3HT conductive polymer improved the thin film quality, reactivity, and reaction rate of the sensor. The sensor demonstrated the ability to accurately measure NO2 gas concentrations ranging from 500 to 100 ppm, with a 5.1 times higher sensitivity, 1.5 times higher response rate, and 1.15 times higher recovery rate compared with sensors without P3HT.

A Method for monitoring air pollution using base stations (이동통신 기지국을 이용한 대기환경 모니터링)

  • Oh, Hyun-Jung;Lee, Jae-Wook;Baik, Song-Hoon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.205-208
    • /
    • 2008
  • This article presents a methodology for the monitoring of air pollution. All over the world, the interest in the environment has been continuously increasing. Unfortunately, much of this interest is due to emerging problems, such as the greenhouse effect and climate change. For this reason, research into carbon dioxide, which causes the greenhouse effect, is progressing rapidly. This article presents a method of measuring the level of carbon dioxide and other substances in the air through the utilization of mobile-networking base stations and measured data. First of all, sensors are attached at the appropriate position of the mobile-networking base stations. These sensors will measure the air quality in their respective positions, and send sensor data to an urban management center via network gateways and data-collecting systems. The measured data can be used for various purposes. In general, it can be used to measure the air quality, which can then be used as a basis for urban planning. The method described herein utilizes airpollution sensors that are attached to the base stations in different locations and at varying heights. The data obtained hereby will be applicable in many fields. At this time this is simply a methodology, however we hope that it will lead to a practical application.

  • PDF

A Strip Sensor Based on PbO2/Carbon Paste Electrode to Determine Sweetener Contents in Fruits (이산화납/탄소 반죽 전극을 이용한 과당 농도 측정 스트립센서)

  • Lee, Jae Seon;Cho, Joo Young;Heo, Min;Lim, Woo-Jin;Lee, Sang Eun;Nam, Hakhyun;Cha, Geun Sig;Shin, Jae Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • A strip sensor based on $PbO_2$/carbon paste electrode was prepared by a screen-printing method, and employed to electrochemically determine the concentration of fruit sweeteners(i.e. glucose, sucrose, and fructose). The $PbO_2$/carbon paste electrode could monitor electrocatalytic oxidation of organic compounds such as carbohydrates, and measure the levels of natural sweeteners without enzyme. Severe interference from ascorbic acid was effectively reduced by modifying the electrode surface with a Nafion membrane. The response level of the Nafion/$PbO_2$/carbon paste electrode increased in the order of fructose, sucrose, and glucose, which corresponds to the order of sweetness perceived by humans.

Polymer Waveguide Based Refractive Index Sensor Using Polarimetric Interference (편광 간섭을 이용한 광도파로 기반의 표면 굴절률 센서)

  • Son, Geun-Sik;Kwon, Soon-Woo;Kim, Woo-Kyung;Yang, Woo-Seok;Lee, Hyung-Man;Lee, Han-Young;Lee, Sung-Dong;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.193-198
    • /
    • 2008
  • A novel refractive index sensor, which consists of polymer channel waveguide overlaid with $TiO_2$ thin film, is demonstrated. To evaluate the fabricated sensor, we measured the polarimetric interference induced by concentration change of injected glycerol solution. Our experimental results show that thicker $TiO_2$ film improves the sensitivity of the polarimetric interferometer. For the fabricated waveguide with a 20 nm thick $TiO_2$ film, the measured index change to lead phase variation of $2{\pi}$ is $1.8{\times}10^{-3}$.