• Title/Summary/Keyword: Leaching Process

Search Result 374, Processing Time 0.018 seconds

Application of Microwave-HClO Leaching for On-board Recovery of Au in Hydrothermal Minerals (열수광물내 Au의 선상회수를 위한 마이크로웨이브-차아염소산 용출 적용성)

  • Kim, Hyun Soo;Myung, Eun Ji;Kim, Min Sung;Lee, Sung-Jae;Park, Cheon-young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.243-250
    • /
    • 2020
  • The purpose of this study is to find out the possibility of applying microwave-hypochlorous acid leaching to effectively leaching Au in hydrothermal minerals on board. The comparative leaching experiment were confirmed that the leaching rate of Au with(T1)/with out(T2) of microwave nitric acid leaching. In addition, the leaching rate of Au on the conventional leaching by mechanical agitation(T3) and microwave leaching was compared. The result of microwave nitric acid leaching(solid-liquid ratio; 10%, leaching temperature; 90 ℃, leaching time; 20 min) confined that the metal leaching rate was high in the order of As>Pb>Cu>Fe>Zn, and the content of Au in the leaching residue was increased from 33.77 g/ton to 60.02 g/ton. As a result of the comparative leaching experiment using a chloride solvent, the dissolution rate of Au was high in the order of T1(61.10%)>T3(53.30%)>T2(17.30%). Therefore, chloride, which can be manufactured using seawater and that can be recycled by collecting chlorine gas generated in the leaching process, is expected to be an optimal solvent for Au leaching. In addition, the application of microwaves is believed to be effective in terms of time, efficiency and energy.

Current Status of Gold Leaching Technologies from Low Grade Ores or Tailings (저품위 광석 또는 광미내 금 침출기술 현황)

  • Lee, Sang-hun
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.3-7
    • /
    • 2020
  • Recently, the gold leaching technologies draw much interest to recover gold from low grade ores. Current leaching processes mostly use cyanide as the leaching agent, due to its high leaching efficiencies and cost-effectiveness. However, use of cyanide is severely problematic, because of toxicity and thereby environmental risks, and requires strict regulations and environmental management. Especially, this issue becomes further apparent when cyanide should be applied for dump or heap leaching for low cost gold recovery along with recent trends. To resolve this issue, the alternative leaching processes using thiosulfate or halogen compounds, instead of cyanide, have been studied and developed but there have been lots of difficulties toward commercialization, and therefore further research should be conducted. The commercialization of dump or heap bioleaching technologies should be urgently required for effective direct biogenic gold recovery from low grade ores or tailings without use of cyanide.

Recovery of Copper Powder form MoO3 Leaching Solution Using Cementation Reaction System (MoO3 침출공정 폐액으로부터 치환반응 시스템을 이용한 구리 분말 회수에 대한 연구)

  • Kim, Geon-Hong;Hong, Hyun-Seon;Jung, Hang-Chul
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.405-411
    • /
    • 2012
  • Recovery of copper powder from copper chloride solution used in $MoO_3$ leaching process was carried out using a cementation method. Cementation is a simple and economical process, necessitating less energy compared with other recovery methods. Cementation utilizes significant difference in standard reduction potential between copper and iron under standard condition. In the present research, Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated using bench-scale cementation reaction system. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRF, SEM-EDS and laser diffraction and scattering methods. Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99.65% purity and average $1{\mu}m$ in size.

Recovery of Yttrium from the Sludge Generated in Recycling Process of the Obsolete CRT (폐CRT의 재활용 공정에서 발생한 슬러지로부터 Y의 회수)

  • 전준미;이재천;정진기;김남철
    • Resources Recycling
    • /
    • v.10 no.6
    • /
    • pp.22-28
    • /
    • 2001
  • A study on the recovery of yttrium was conducted using the phosphor sludges generated in the recycling process of obsolete CRTs. Yttrium was leached by HCl and $HNO _3$. The leaching efficiency of yttrium was extensively investigated in terms of acid concentration, leaching temperature and time, and pulp density. Yttrium and lead was recovered from leaching solutions also by precipitation method. The leaching behavior of yttrium was similar in both acids. The leaching efficiency of yttrium for both acids increased with time at the conditions of 3.0M, $90^{\circ}C$, and 280 g/L of pulp density. After 40 minutes, it was saturated to 93% and 90% for HCl and HNO$_3$respectively. Yttrium was recovered from leaching acid solution by the addition of $H_2$$C_2$$O_4$while lead was removed as $PbSO_4$by $Na_2$ $SO_4$.

  • PDF

Recovery of High Purity TiO2 Powder from Ilmenite by Hydrochloric Acid Leaching (타이타늄 철석으로부터 염산 침출에 의한 고순도 이산화 타이타늄 회수)

  • Ahn, Hyeong Hun;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.68-73
    • /
    • 2019
  • Ilmenite is one of the principal ores for the production of titanium dioxide. To produce titanium dioxide with purity higher than 99.9% from ilmenite, Ti(IV) should be separated from the dissolved impurities such as Fe(III), Si(IV), and Mn(II) present in ilmenite. In this work, a hydrometallurgical process was investigated to recover pure titanium dioxide from ilmenite by HCl leaching followed by separation and hydrolysis of Ti(IV). An optimum leaching condition was obtained by investigating the effect of HCl concentration, pulp density, and leaching time on the leaching percentage of Ti(IV), Fe(III), Si(IV), and Mn(II). Ammonium hydroxide and sodium hydroxide solutions were employed as neutralizing agents to hydrolyze Ti(IV) from the stripping solution of Ti(IV). Titanium dioxide of the anatase phase was obtained by calcination of the hydrolyzed precipitates with $NH_4OH$ solution. A hydrometallurgical process can be developed to produce pure $TiO_2$ powders from ilmenite.

Toward high recovery and selective leaching of zinc from electric arc furnace dust with different physicochemical properties

  • Lee, Han Saem;Park, Da So Mi;Hwang, Yuhoon;Ha, Jong Gil;Shin, Hyung Sang
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.335-344
    • /
    • 2020
  • This work describes highly efficient recovery and selective leaching of Zn from electric arc furnace dust (EAFD) with different physicochemical properties, induced by acid leaching at ambient conditions. The chemical compositions, mineralogical phases, and particle sizes of the EAFDs were analyzed and compared. The effects of leaching time, liquid/solid ratio, acid type, and acid concentration on the selective leaching of Zn were also studied. The EAFD with high Fe/Zn ratio (> 1, EAFD3) was richer in ZnFe2O4 and exhibited larger particle size than samples with low Fe/Zn ratio (< 1, EAFD1,2). ANOVA analysis revealed that the Fe/Zn ratios of the EAFDs also have a significant effect on Zn extraction (p < 0.005). Selective leaching of Zn with minimum Fe dissolution was obtained at pH > 4.5, regardless of other parameters or sample properties. The maximum Zn extraction rate obtained by the pH control was over 97% for EAFD1 and EAFD2, 76% for EAFD3, and 80% for EAFD4. The present results confirm that the Fe/Zn ratio can be used to identify EAFDs that permits facile and high-yield Zn recovery, and pH can be used as a process control factor for selective leaching of Zn regardless of any differences in the properties of the EAFD sample.

Chemical Leaching of Cobalt and Lithium from the Cathode Active Materials of Spent Lithium-ion Batteries by Organic Acid (폐(廢)리튬이온전지(電池) 양극활물질(陽極活物質)에서 유기산(有機廳)을 이용(利用)한 코발트 및 리튬의 화학적(化學的) 침출(浸出))

  • Ahn, Jae-Woo;Ahn, Hyo-Jin
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • Environmental friendly leaching process for the recovery of cobalt and lithium from the $LiCoO_2$ was investigated by organic acids as a leaching reagent. The experimental parameters, such as organic acid type, concentrations of leachant and hydrogen peroxide, reaction time and temperature as well as the pulp density were tested to obtain the most effective conditions for the leaching of cobalt and lithium. The results showed that the latic acid was the most effective leaching reagent for cobalt and lithium among the organic acids and was reached about 99.9% of leaching percentage respectively. With the increase of the concentration of citric acid, hydrogen peroxide and temperature, the leaching rate of cobalt and lithium increased. But the increase of pulp density decreased the leaching rate of cobalt and lithium.

Development of Ammoniacal Leaching Processes; A Review (암모니아 침출공정(浸出工程) 기술개발(技術開發) 동향(動向))

  • Yoo, Kyoungkeun;Kim, Hyunjung
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.3-17
    • /
    • 2012
  • Selective leaching processes for copper, gold, nickel, and cobalt have been investigated because there is an advantage of ammoniacal hydrometallurgy that metal such as copper could be selectively extracted restricting the dissolution of iron or calcium. In the present article, the studies for selective ammoniacal leaching of copper from motor scraps and waste printed circuit boards (PCBs), for ammoniacal leaching of gold to decrease the amount of cyanide used or to substitute cyanide by thiosulfate, and for ammoniacal leaching to recover nickel and cobalt from nickel oxide ore and intermidiate obtained from manganese nodule treatment process were summarized and further studies were proposed for domestic technology development for ammoniacal hydrometallurgy processes.

Adsorption and Leaching Characteristics of the Artificial Soils Produced from Sludge (슬러지를 이용하여 생산한 인공토양의 흡착 및 용출 특성)

  • 윤춘경;김선주;임융호;정일민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.77-84
    • /
    • 1998
  • Adsorption and leaching characteristics of the artificial soils produced from water and wastewater treatment sludges were examined. The batch adsorption test and TCLP leaching test were used, and constituents of interest were heavy metals and nutrients. As, Cr, Cu, Pb, and Cd were analyzed for metals, and nitrogen and phosphorus were analyzed for nutrients. All the artificial soils showed strong adsorption and low leaching for the heavy metals, which implies that the artificial soils may not be hazardous to the environment due to heavy metals and even they can be utilized effectively to remove metals in solution like mine and industrial wastewaters. This is quite promising result because in most case heavy metals are the most concern in the application of sludge product to the farmland. For the nutrients, generally, artificial soils showed high adsorption and low leaching except artificial soil from wastewater sludge produced by low temperature firing. The artificial soils produced from water treatment sludge were active in adsorbing nutrients and showed low leaching that they can be practically used to remove nutrients in advanced treatment process of the wastewater. The artificial soils produced from wastewater treatment sludge were less active in adsorbing nutrients and showed high teaching. However, they could be used usefully if applied properly to the plant growing because of their fertilizing effect. Based on the test results, overall, the artificial soils were thought to be not hazardous to the environment and they could be more useful if applied properly.

  • PDF

The Optimum Condition Analysis of Vanadium Solvent Extraction by Alamine336 from the Synthetic Vanadium Sulfate Solution. (황산바나듐 모의용액으로부터 Alamine336에 의한 바나듐 용매추출의 최적조건 연구)

  • Ahn, Jong-Gwan;Ahn, Jae-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.823-829
    • /
    • 2008
  • The solvent extraction process for the recovery of vanadium from leaching solution of SCR(selective catalytic reduction) spent catalyst was investigated by using Alamine336 as an extractant. The effects of experimental conditions, such as initial pH and concentration of sulfate ion, and ammonia concentration of stripping solution were studied. The extraction percentage of vanadium were increased with the increase of initial pH of leaching solution and decreased with the increase of sulfate ion. More than 99% of vanadium in leaching solution were extracted and stripped at the A/O ratio of 1.0 in 2 stages. On the basis of these results, an optimum solvent extraction process which vanadium was effectively recovered from SCR spent catalyst was proposed.