DOI QR코드

DOI QR Code

Development of Ammoniacal Leaching Processes; A Review

암모니아 침출공정(浸出工程) 기술개발(技術開發) 동향(動向)

  • Yoo, Kyoungkeun (Department of Energy & Resources Engineering, Korea Maritime University) ;
  • Kim, Hyunjung (Department of Mineral Resources & Energy Engineering, Chonbuk National University)
  • 유경근 (한국해양대학교 에너지자원공학과) ;
  • 김현중 (전북대학교 자원에너지공학과)
  • Received : 2012.07.16
  • Accepted : 2012.09.25
  • Published : 2012.10.30

Abstract

Selective leaching processes for copper, gold, nickel, and cobalt have been investigated because there is an advantage of ammoniacal hydrometallurgy that metal such as copper could be selectively extracted restricting the dissolution of iron or calcium. In the present article, the studies for selective ammoniacal leaching of copper from motor scraps and waste printed circuit boards (PCBs), for ammoniacal leaching of gold to decrease the amount of cyanide used or to substitute cyanide by thiosulfate, and for ammoniacal leaching to recover nickel and cobalt from nickel oxide ore and intermidiate obtained from manganese nodule treatment process were summarized and further studies were proposed for domestic technology development for ammoniacal hydrometallurgy processes.

암모니아 습식제련공정은 철과 칼슘의 용해를 억제하며 구리 등의 금속을 선택적으로 침출이 가능한 장점이 있어 구리, 금, 니켈 및 코발트 등의 금속을 선택적으로 침출하기 위한 연구가 수행되어왔다. 이 글에서는 모터스크랩과 폐인쇄회로기판으로부터 구리의 선택적 침출, 티오황산염 사용 등 시안의 대체 및 저감을 위한 금의 암모니아침출, 산화니켈광 및 망간단괴처리공정 중간산물로부터 니켈과 코발트를 회수하기 위한 암모니아침출 기술개발동향을 정리하고 국내 연구개발방향을 제시하고자 하였다.

Keywords

References

  1. Peacy, J., Guo, X., J., and Robles, E., 2004: Copper Hydrometallurgy - Current Status, Preliminary Economics, Future Direction and Positionin verus Smelting, Transactions of Nonferrous Metals Society of China, 14(3), pp. 560-568.
  2. Meng, X. and Han, K., N., 1996: The Principles and Applications of Ammonia Leaching of Metals - A Review, Mineral Processing and Extractive Metallurgy Review, 16, pp. 23-61. https://doi.org/10.1080/08827509608914128
  3. Kim, S-K, 2010: The Main Contents of the Countermeasures for Recycling of Used Metal Resources, J. of Korean Inst. of Resources Recycling, 19(4), pp. 3-12.
  4. Kim, E.-y., Kim, M.-s., Lee, J.-c., Jha, M. K., Yoo, K. and Jeong, J., 2008: Effect of Cuprous Ions on Cu Leaching in the Recycling of Waste PCBs, Using Electro-generated Chlorine in Hydrochloric Acid Solution, Minerals Engineering, 21, pp. 121-128. https://doi.org/10.1016/j.mineng.2007.10.008
  5. Le, L., H., Yoo, K., Jeong, J. and Lee, J.-c., 2008: Leaching of Copper and Silver from Ground Mobile Phone Printed Circuit Boards Using Nitric Acid, J. of Korean Inst. of Resources Recycling, 17(3), pp. 48-55.
  6. Lee, J.-c. et al, Development of Commercial Technology for Recovering Precious Metals, MOST/MOE, 2003.
  7. Lee, J.-c. et al, Development of Recycling Technique for Waste Electric anc Eletronic Equipments, MOST (Ministry of Science and Technology) / MOE (Ministry of Environment), 2010.
  8. Kim, J. H. et al., 2010: Recovery of Nickel from Spent Petroleum Catalyst by Hydrometallurgical Process, J. of the Korean Oil Chemists Soc., 27(3), pp. 273-281.
  9. Kim, J. H. et al., 2010: Recovery of Tungsten from WC-Co Hardmetal Sludge by Aqua Regia Treatment, J. of Korean Inst. of Resources Recycling, 19(4), pp. 41-50.
  10. Park, K.-H., Kim H.-I., and Lee, J.-Y., 2008: Leaching and Precipitation of Vanadium in Ammoniacal Solution, J. of Korean Inst. of Resources Recycling, 17(1), pp. 38-42
  11. Kim, E.-y., Lee, S.-k., and Park, K.-H., 2006: Selective Leaching of Vanadium and Nickel in Metal Oxides Obtained from Orimulsion Ash, J. of Korean Inst. of Resources Recycling, 15(6), pp. 10-15.
  12. Kim, J.-H., Yang, J.-G., and Lee, S.-S., 1995: Recovery of Valuable Metals from the Desulfurizing Spent Catalyst Used in Domestic Petrochemical Industry, J. of Korean Inst. of Resources Recycling, 4(3), pp. 2-9.
  13. Kim, D. S., Chang, T. S., and Lee, Y. B., 1966: Aqueous Oxidation of Sulfide Ore (Part 1) Aqueous Oxidation of Marmatite in Ammonia Solution, Journal of the Korean Chemical Society, 10(2), pp. 54-58.
  14. Lee, U. J., 1998: A Study on the Development of Hydrometallurgical Processes of Electric Arc Furnace Dust, Ministry of Science and Technology.
  15. Lee, D. H. et al., 1985: Extraction of Nickel from Indonesian Low Grade Laterites: Electrochemical Leaching & Purification of Leach Liquors, Ministry of Science and Technology.
  16. Kim, H. J. et al., 1983: "New Dictionary of Chemistry", pp. 715, Bub-kyung, Seoul, Korea.
  17. Luo, R., 1987: Overall Equilibrium Diagrams for Hydrometallurgical Systems: Copper -Ammonia -Water System, Hydrometallurgy, 17, pp. 177-199. https://doi.org/10.1016/0304-386X(87)90051-X
  18. Bard, A. J., Parsons, R, and Jordan, J., 1985: "Standard Potentials in Aqueous Solution", pp. 250, 258, 288, 295, 314, 322, 340, Marcel Dekker, Inc., New York, USA.
  19. Pourbaix, M., 1974: "Atlas of Electrochemical Equilibria in Aqueous Solutions", p. 323, National Association of Corrosion Engineers, Houston, USA.
  20. Koyama, K., Tanaka, M., and Lee, J.-c., 2006: Copper Leaching Behavior from Waste Printed Circuit Board in Ammoniacal Alkaline Solution, Materials Transactions, 47(7), pp. 1788-1792. https://doi.org/10.2320/matertrans.47.1788
  21. Koyama, K., Tanaka, M., Miyasaka, Y., and Lee, J.-c., 2006: Electrolytic Copper Deposition from Ammoniacal Alkaline Solution Containing Cu(I), Materials Transactions, 47(8), pp. 2076-2080. https://doi.org/10.2320/matertrans.47.2076
  22. Majima, H., Nigo, S., Hirato, T., Awakura, Y., and IWAI M., 1993: Dissolution of Copper with Aqueous Cupric Ammine Solution - Studies on the Selective Recovery of Copper and Iron from Motor Scrap (1st Report), MMIJ, 109(3), pp. 191-194. https://doi.org/10.2473/shigentosozai.109.191
  23. Zhou, K., Shinme, K., and Anezaki, S., 1995: Dissolution Rate of Copper in Aqueous Ammonia Solution - Removal of Copper from Ferrous Scrap with Ammonia Leaching Method (1st Report), MMIJ, 111(1), pp. 49-53. https://doi.org/10.2473/shigentosozai.111.49
  24. Zhou, K., Shnme, K., and Anezaki, S., 1995: Removal of Copper from Automobile Scrap - Removal of Copper from Ferrous Scrap with Ammonia Leaching Method (2nd Report), MMIJ, 111(1), pp. 55-58. https://doi.org/10.2473/shigentosozai.111.55
  25. Zhou, K., Shnme, K., and Anezaki, S., 1996: Measurment of Copper Dissolution Rates in Aqueous Ammonia Solutions with Oxygen Circulating Ammonia Leaching Method, Metallurgical Review of MMIJ, 13(1), pp. 62-75.
  26. Zhou, K., Shnme, K., and Anezaki, S., 1996: Copper Removal from Junk Automobile Scraps with Oxygen Circulating Ammonia Leaching Method, Metallurgical Review of MMIJ, 13(1), pp. 76-85.
  27. Oishi, T., Koyama, K., Alam, S., Tanaka, M., and Lee, J.- c., 2007: Recovery of High Purity Copper Cathode from Printed Circuit Boards Using Ammoniacal Sulfate or Chloride Solutions, Hydrometallurgy, 89, pp. 82-88. https://doi.org/10.1016/j.hydromet.2007.05.010
  28. Sedzimir, J. and Bujanska, M., 1978: Kinetics of Leaching of Copper Metal in Copper(II)-Ammonium Sulphate Solutions as Determined by the Rotating Disc Method, Hydrometallurgy, 3, pp. 233-248. https://doi.org/10.1016/0304-386X(78)90025-7
  29. Mironov, V. E., Pashkov, G. L., and Stupko, T. V., 1992: Thermodynamics of Formation Reactions and Hydrometallurgical Application of Metal - Ammonia Complexes in Aqueous Solutions, Russian Chemical Reviews, 61(9), pp. 944-958. https://doi.org/10.1070/RC1992v061n09ABEH001008
  30. Nigo, S., Majima, H., HIrato, T., Awakura, Y., and Iwai M., 1993: Recovery of Copper from Motor Scrap Utilizing Ammonia Leaching Technique - Studies on the Selective Recovery of Copper and Iron from Motor Scrap (2nd Report), MMIJ, 109(5), pp. 337-340. https://doi.org/10.2473/shigentosozai.109.337
  31. Oishi, T., Koyama, K., Konishi, H., Tanaka, M., and Lee, J.-c., 2007: Influence of Ammonium Salt on Electrowinning of Copper from Ammoniacal Alkaline Solutions, Electrochimica Acta, 53, pp. 127-132. https://doi.org/10.1016/j.electacta.2007.06.024
  32. Oishi, T., Yaguchi, M., Koyama, K., Tanaka, M., and Lee, J.-c., 2008: Hydrometallurgy Process for the Recycling of Copper Using Anodic Oxidation of Cuprous Ammine Complexes and Flow-Through Electrolysis, Electrochimica Acta, 53, pp. 2585-2592. https://doi.org/10.1016/j.electacta.2007.10.046
  33. Oishi, T., Yaguchi, M., Koyama, K., Tanaka, M., and Lee, J.-c., 2008: Effect of Phosphate on Lead Removal during a Copper Recycling Process from Waste Using Ammoniacal Chloride Solution, Hydrometallurgy, 90, pp. 161-167. https://doi.org/10.1016/j.hydromet.2007.10.008
  34. Bari, F., Begum, N., Jamaludin, S. B., and Hussin, K., 2009: Selective Leaching for the Recovery of Copper from PCB, Proceedings of the Malaysian Metallurgical Conference '09 (MMC09), December 1-2, Perlis, Malaysia, pp. 1-4.
  35. Chang, C.-J. and Liu, J. C., 1998: Feasibility of Copper Leaching from an Industrial Sludge Using Ammonia Solutions, Journal of Hazardous Materials, 58, pp. 121- 132. https://doi.org/10.1016/S0304-3894(97)00125-8
  36. Aylmore, M. G., 2005: "Alternative Lixiviants to Cyanide for Leaching Gold Ores", In: Adams, M. D. (Eds.), Advances in Gold Ore Processing, pp. 501-560, Elsevier B. V., Amsterdam, Netherlands.
  37. Marsden, J. O. and House, C. L., 2006: "The Chemistry of Gold Extraction", pp. 233-295, Society for Mining, Metallurgy, and Exploration, Inc., Colorado, USA.
  38. Aylmore, M. G. and Muir, D. M., 2001: Thiosulfate Leaching of Gold - A Review, Minerals Engineering, 14(2), pp. 135-174. https://doi.org/10.1016/S0892-6875(00)00172-2
  39. Jeffrey, M. I., 2001: Kinetic Aspects of Gold and Silver Leaching in Ammonia-Thiosulfate Solutions, Hydro metallurgy, 60, pp. 7-16.
  40. Breuer, P. L. and Jeffrey, M. I., 2002: An Electrochemical Study of Gold Leaching in Thiosulfate Solutions Containing Copper and Ammonia, Hydrometallurgy, 65, pp. 145-157. https://doi.org/10.1016/S0304-386X(02)00086-5
  41. Breuer, P. L. and Jeffrey, M. I., 2000: Thiosulfate Leaching Kinetics of Gold in the Presence of Copper and Ammonia, Minerals Engineering, 13(10-11), pp. 1071-1081. https://doi.org/10.1016/S0892-6875(00)00091-1
  42. Senanayake, G., 2012: Gold Leaching by Copper (II) in Ammoniacal Thiosulphate Solutions in the Presence of Additives. Part I: A Review of the Effect of Hard-Soft and Lewis Acid-Base Properties and Interactions of Ions, Hydrometallurgy, 115-116, pp. 1-20. https://doi.org/10.1016/j.hydromet.2011.11.011
  43. Senanayake, G. and Zhang, X. M., 2012: Gold Leaching by Copper (II) in Ammoniacal Thiosulphate Solutions in the Presence of Additives. Part II: Effect of Residual Cu (II), pH and Redox Potentials on Reactivity of Colloidal Gold, Hydrometallurgy, 115-116, pp. 21-19. https://doi.org/10.1016/j.hydromet.2011.11.010
  44. Feng, D. and van Deventer, J. S. J., 2006: Ammoniacal Thiosulphate Leaching of Gold in the Presence of Pyrite, Hydrometallurgy, pp. 126-132.
  45. Feng, D. and VAn Deventer, J. S. J., 2010: Effect of Thiosulphate Salts on Ammoniacal Thiosulphate Leaching of Gold, Hydrometallurgy, pp. 120-126.
  46. Alonso-Gomez, A. R. and Lapidus, G. T., 2009: Inhibition of Lead Solubilization during the Leaching of Gold and Silver in Ammoniacal Thiosulfate Solutions (Effect of Phosphate Addition), Hydrometallurgy 99, pp. 89-96. https://doi.org/10.1016/j.hydromet.2009.07.010
  47. Arima, H., Fujita, T. and Yen, W.-T., 2004: Using Nickel as a Catalyst in Ammonium Thiosulfate Leaching for Gold Extraction, Materials Transactions, 45(2), pp. 516-526. https://doi.org/10.2320/matertrans.45.516
  48. Zipperian, D., Raghavan, S. and Wilson, J. P., 1988: Gold and Silver Extraction by Ammoniacal Thiosulfate Leaching from a Rhyolite Ore, Hydrometallurgy, 19, pp. 361-375. https://doi.org/10.1016/0304-386X(88)90041-2
  49. Zheng, J., Ritchie, I. M., La Brooy, S. R., and Singh, P., 1995: Study of Gold Leaching in Oxygenated Solutions Containing Cyanide-Copper-Ammonia Using a Rotating Quartz Crystal Microbalance, Hydrometallurgy, 39, pp. 277-292. https://doi.org/10.1016/0304-386X(95)00036-G
  50. Jeffrey, M. I., Linda, L., Breuer, P. L., and Chu, C. K., 2002: A kinetic and Electrochemical Study of the Ammonia Cyanide Process for Leaching Gold in Solutions Containing Copper, Minerals Engineering, 15, pp. 1173- 1180. https://doi.org/10.1016/S0892-6875(02)00265-0
  51. Muir, D. M., 2011: A Review of the Selective Leaching of Gold frome Oxidised Copper-Gold Ores with Ammonia- Cyanide and New Insights for Plant Control and Operation, Minerals Engineering, 24, pp. 576-582. https://doi.org/10.1016/j.mineng.2010.08.022
  52. Meng, X. and Han, K. N., 1993: The Dissolution Behavior of Gold in Ammoniacal Solutions, In: HIskey, J. B. and Warren, G. W. (Eds.), Hydrometallurgy - Fundamentals, Technology and Innovation, SME Littleton, Co, Printed by Cushing-Malloy, Ann Arbor, MI, pp. 205-221.
  53. Dasgupta, R., Guan, Y. C., and Han, K. N., 1997: The Electrochemical Behavior of Gold in Ammoniacal Solutions at $75^{\circ}C$, Metallurgical and Materials Transactions B, 28B, pp. 5-12.
  54. Han, K. N. and Fuerstenau, M. C., 2000: Factors influencing the rate of dissoluton of gold in ammoniacal solutions, International Journal of Mineral Processing, 58, pp. 369-381. https://doi.org/10.1016/S0301-7516(99)00046-0
  55. Peri, K., Guan, Y. and Han, K. N., 2001: Dissolution Behavior of Gold in Ammoniacal Solutions with Iodine as an Oxidant, Minerals & Metallurgical Processing, 18(1), pp. 13-17.
  56. Bhuntumkomol, K., Han, K. N., and Lawson, F., 1982: The Leaching Behavior of Nickel Oxides in Acid and in Ammoniacal Solutions, Hydrometallurgy, 8, pp. 147-160. https://doi.org/10.1016/0304-386X(82)90041-X
  57. Nikoloski, A. N. and Nicol, M. J., 2010: The Electrochemistry of the Leaching Reactions in the Caron Process II. Cathodic Processes, Hydrometallurgy, 105, pp. 54-59. https://doi.org/10.1016/j.hydromet.2010.07.008
  58. Senanayake, G., Senaputra, A., and Nicol, M. J., 2010: Effect of Thiosulfate, Sulfide, Copper(II), Cobalt(II)/(III) and Iron Oxides on the Ammonical Carbonate Leaching of Nickel and Ferronickel in the Caron Process, Hydrometallurgy, 105, pp. 60-68. https://doi.org/10.1016/j.hydromet.2010.07.011
  59. Jandova, J. and Pedlik, M., 1994: Leaching Behaviour of Iron-Nickel Alloys in Ammoniacal Solution, Hydrometallurgy, 35, pp. 123-128. https://doi.org/10.1016/0304-386X(94)90023-X
  60. Chander, S. and Sharma, V. N., 1981: Reduction Roasting/ Ammonia Leaching of Nickeliferous Laterites, Hydrometallurgy, 7, pp. 315-327. https://doi.org/10.1016/0304-386X(81)90029-3
  61. Han, K. N., Nebo, C. O., and Ahmad, W., 1987: The Leaching Kinetics of Cobalt and Nickel form Aluminum- Coprecipitated Products, Metallurgical Transactions B, 18B, pp. 635-640.
  62. Katsiapi, A., Tsakiridis, P. E., Oustadakis, P., and Agatzini- Leonardou, S., 2010: Cobalt Recovery from Mixed Co-Mn Hydroxide Precipitates by Ammonia-Ammonium Carbonate Leaching, Minerals Engineering, 23, pp. 643-651. https://doi.org/10.1016/j.mineng.2010.03.006
  63. Yoo, K. et al., 2011: Mineral Processing Technologies for Deep-Seabed Resources; A Review, J. KSGE, 48(6), pp. 821-828.
  64. Park, K.-H., Mohapatra, D., Reddy, B. R., and Nam C.-W., 2007: A Study on the Oxidative Ammonia/Ammonium Sulphate Leaching of a Complex (Cu-Ni-Co-Fe) Matte, Hydrometallurgy, 86, pp. 164-171. https://doi.org/10.1016/j.hydromet.2006.11.012
  65. Niinae, M., Komatsu, N., Nakahiro, Y., Wakamatsu, T., and Shibata, J., 1996: Preferential Leaching of Cobalt, Nickel and Copper from Cobalt-Rich Ferromanganese Crusts with Ammoniacal Solutions Using Ammonium Thiosulfate and Ammonium Sulfite as Reducing Agents, 40, pp. 111-121. https://doi.org/10.1016/0304-386X(94)00085-H
  66. Jana, R. K., Pandey, B. D., 1999: Ammoniacal Leaching of Roast Reduced Deep-sea Manganese Nodules, Hydrometallurgy, 53, pp. 45-56. https://doi.org/10.1016/S0304-386X(99)00031-6
  67. Mishra, D., Srivastava, R. R., Sahu, K. K., Singh, T. B., and Jana, R. K., 2011: Leaching of Roast-reduced Manganese Nodules in $NH_{3}-(NH_{4})_{2}CO_{3} $ Medium, Hydrometallurgy, 109, pp. 215-220. https://doi.org/10.1016/j.hydromet.2011.07.006
  68. Demidov, A. I. and Krasovitskaya, O. A., 2001: Kinetics of Leaching of Nickel Compounds from Spent Electrodes of Nickel-Iron Batteries in Ammonia Solutions, Russian Journal of Applied Chemistry, 74(5), pp. 737-741. https://doi.org/10.1023/A:1012776513996
  69. Salhi, R., 2010: Recovery of Nickel and Copper from Metal Finishing Hydroxide Sludges by Ammoniacal Leaching, Mineral Processing and Extractive Metallurgy, 119(3), pp. 147-152. https://doi.org/10.1179/037195510X12772935654585

Cited by

  1. The ammonia leaching of alloy produced from waste printed circuit boards smelting process vol.16, pp.3, 2013, https://doi.org/10.1080/12269328.2013.833486