• Title/Summary/Keyword: Layered clay

Search Result 120, Processing Time 0.024 seconds

Synthesis and characterization of starch$^Na+$-montmorillonite clay nanocomposites

  • Na, Seong-Ki;Park, Jong-Shin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.67-68
    • /
    • 2003
  • Native corn starch and montmorillonite caly nanocomposites were prepared using the glycerol as the plasticizer. These were characterized by mechanical analysis, X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The tensile strength increased with the clay content to a maximum point and then decreased due to gapping between the two phases. Dispersion of the layered silicate within the starch was verified using X-ray diffraction pattern. Examination of these materials by scanning electron showed that intercalates have good wetting to the starch surface.

  • PDF

Monitoring management for safely construction of deep shield tunnel (대심도 해저 쉴드터널 안전시공을 위한 계측관리)

  • 유길환;김영수;황대영;곽정민;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.319-326
    • /
    • 2002
  • During the construction period of submarine shield tunnel, which is built firstly in very soft marine clay layer 40m deep in Korea, wide range problems were encountered such as safe launching against high earth pressure at shield entrance, technique of shield face pressure control when passing through complex multi-layered soils This paper introduces successful construction practice through development of state-of-the-art construction method and field monitoring.

  • PDF

Investigation of Spudcan Penetration Resistance in Layered Soil Deposits

  • Jan, Muhammad Asad;Nizamani, Zubair Ahmed;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • A suite of 3D large deformation finite element (FE) analyses was performed to investigate the load transfer mechanism and penetration resistance of spudcan foundations in heterogeneous soil profile consisting of sand and clay. The Elasto-Plastic models following Mohr-Coulomb and Tresca failure criteria were adopted for sand and clay, respectively. The accuracy of the numerical model was validated against centrifuge test measurements. The dense sand behavior with dilation is modeled using the non-associated flow rule. An investigation study consisting of key parameters, which includes variation in soil stratigraphy (sand-clay, sand-clay-sand), strength parameters of sand and clay (��' and su) and normalized height ratio of the sand layer (Hs/D) was conducted to assess the penetration behavior of spudcan. Based on calculated outputs, it was demonstrated that these parameters have a significant influence on the penetration resistance of spudcan. The calculated penetration resistance profiles are compared with the published (sand overlying clay) analytical model. It is confirmed that for the case of two-layer soil, the available theoretical model provides an accurate estimate of peak penetration resistance (qpeak). In the case of three-layer soil, the presence of a third stiff layer affects the penetration resistance profile due to the squeezing of the soil.

Preparation and Mechanical Properties of SBS/Clay Nanocomposites (SBS/Clay나노복합체의 제조 및 기계적 특성)

  • Choi, Hyun-Kuk;Park, Se-Hyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Styrene-butadiene-styrene copolymer(SBS)/Clay nanocomposites were prepared by melt mixing method with organic clay modified with dimethyl dihydrogenated-tallow amine(Cloisite 15A) and methyl tallow bis (2-hydroxy-ethyl) amine(Cloisite 30A), respectively. From the results of XRD, we found that mono layered silicates were dispersed in SBS matrix and they were exfoliated nanocomposites. Mechanical properties of exfoliated SBS nanocomposites were more improvedl than those of SBS. Especially, it was found that the addition of small amount of organoclay was enough to improve mechanical properties without increasing hardness.

The bearing capacity of square footings on a sand layer overlying clay

  • Uncuoglu, Erdal
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.287-311
    • /
    • 2015
  • The ultimate bearing capacity and failure mechanism of square footings resting on a sand layer over clay soil have been investigated numerically by performing a series of three-dimensional non-linear finite element analyses. The parameters investigated are the thickness of upper sand layer, strength of sand, undrained shear strength of lower clay and surcharge effect. The results obtained from finite element analyses were compared with those from previous design methods based on limit equilibrium approach. The results proved that the parameters investigated had considerable effect on the ultimate bearing capacity and failure mechanism occurring. It was also shown that the thickness of upper sand layer, the undrained shear strength of lower clay and the strength of sand are the most important parameters affecting the type of failure will occur. The value of the ultimate bearing capacity could be significantly different depending on the limit equilibrium method used.

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite

  • Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.110-122
    • /
    • 2012
  • This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.

Evaluation of Vertical Bearing Capacity of Bucket Foundations in Layered Soil by Using Finite Element Analysis (유한요소해석을 통한 다층지반에서의 버킷기초 수직지지력 산정)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Saeed-ullah, Jan Mandokhai
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.35-45
    • /
    • 2016
  • Estimation of vertical bearing capacity is critical in the design of bucket foundation used to support offshore structure. Empirical formula and closed form solutions for bucket foundations in uniform sand or clay profiles have been extensively studied. However, the vertical bearing capacity of bucket foundations in alternating layers of sand overlying clay is not well defined. We performed a series of two-dimensional axisymmetric finite element analyses on bucket foundations in sand overlying clay soil, using elasto-plastic soil model. The load transfer mechanism is investigated for various conditions. Performing the parametric study for the friction angles, undrained shear strengths, thickness of sand layer, and aspect ratios of foundation, we present the predictive charts for determining the vertical bearing capacities of bucket foundations in sand overlying clay layer. In addition, after comparing with the finite element analysis results, it is found that linear interpolation between the design charts give acceptable values in these ranges of parameters.

Synthesis and Characterization of Allyl Ester Resin-Layered Silicate Nanocomposite (알릴 에스터 수지-층상 실리케이트 나노복합재료의 합성과 특성)

  • 팽세웅;김장엽;허완수;조길원;이상원
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.177-184
    • /
    • 2004
  • Polymer-clay nanocomposite containing the low amounts of clay shows improved physical, mechanical properties. In this study, allyl ester prepolymer was synthesised by reactions of the diallyl terephthalate monomers and the 1,3-butanediol monomers. Nanocomposites of allyl ester prepolymer and the two kinds of the organically layered silicate were prepared by using the intercalation method as well as the in-situ polymerization method using. By varying the amount of clay content, curing conditions, and feeding conditions. the nanocomposite was studied using X-ray diffraction. From XRD results, allyl ester-Cloisite 30 B nanocomposite made by the in-situ polymerization method shows better exfoliation behavior compared with the intercalation method. It can be said that the transesterification reaction between functional groups (-OH) of intercalant and monomers results in the increased gallery distance. Also mechanical and thermal properties indicate that the dispersity of clay is an important factor for improving physical properties of the nanocomposite.

A Study on the Preparation of Polyimide/Clay Nanocomposites (폴리이미드/Clay 나노복합재료의 합성에 관한 연구)

  • 이충언;배광수;최현국;이정희;서길수
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.228-236
    • /
    • 2000
  • The preparation of organophilic clay from Na$^{+}$-MMT was achieved by intercalation of alkylammonium bromide. The dispersed organophilic clay in NMP was then added to the solution of polyamic acids (BPDA-PPD, BTDA-ODA/ MPD) in NMP. After curing at 30$0^{\circ}C$, thin films of the polyimide/clay nanocomposite were prepared. The results of X-ray diffraction (XRD) shelved that the d-spacings of dried polyamic acid (PAA)-clay complexes increased in proportion to the chain length of the onium ion and patterns of two kinds of PAA-clay complexes were similar. The d-spacings of approximately 13.2 $\AA$ for the polyimide/clay nanocomposites were independent of the initial onium ion chain length and the species of PAA. From the study of XRD and transmission electron microscopy (TEM), we found layered silicates were dispersed in polyimide matrix and the resultants were intercalated nanocomposites. TGA result showed thermal stability of polyimide nanocomposite improved a little more than the pure polyimide. From the result of dynamic mechanical property, we found that the storage modulus of the nanocomposites had increased by 1.2-1.8 times of the pure polyimides.s.

  • PDF

Layered Silicate-Polymer Nanocomposites

  • Jeong, Han-Mo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.18-18
    • /
    • 2003
  • Natural clays are composed of oxide layers whose thickness is about 1nm and cations existing between the layers. A number of these layers makes primary particles with a height of about 8∼10nm and these primary particles make aggregates with a size of about 0.1∼10$\mu\textrm{m}$. When layered silicate was made to be organophilic, by exchanging the interlayer cations with organic cationic molecules, the matrix polymer can penetrate between the layers to give a nanocomposite, where 1nm-scal clay layers exist separately in a continuous polymer matrix. These nanostructured hybrid organic-inorganic composites have attracted the great interest of researchers over the last 10 years. They exhibit improved performance properties compared with conventional composites, because their unique phase morphology by layer intercalation or exfoliation maximizes interfacial contact between the organic and inorganic phases and enhances interfacial properties. Since the advent of nylon-6/montmorillonite nanocomposite developed by Toyota Motor Co., the studies on layered silicate-polymer nanocomposites have been successfully extended to other polymer systems. They greatly improved the thermal, mechanical, barrier, and even the flame-retardant properties of the polymers.

  • PDF