• Title/Summary/Keyword: Layered Structures

Search Result 508, Processing Time 0.021 seconds

Efficient Layered Manufacturing Method of Metallic Sandwich Panel with Pyramidal Truss Structures using Infrared Brazing and its Mechanical Characteristics (피라미드 트러스형 금속 샌드위치 판재의 적외선 브레이징을 이용한 효율적 적층식 제작 및 특성에 관한 연구)

  • Lee, Se-Hee;Seong, Dae-Yong;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.76-83
    • /
    • 2010
  • Metallic sandwich panels with pyramidal truss structures are high-stiffness and high-strength materials with low weight. In particular, bulk structures have enough space for additional multi-functionalities. In this work, in order to fabricate 3-D structures efficiently, Layered Manufacturing Method (LMM) which was composed of three steps, including crimping process, stacking process and bonding process using rapid infrared brazing, was proposed. The joining time was drastically reduced by employing infrared brazing of which heating rate and cooling rate were faster than those of conventional furnace brazing. By controlling the initial cooling rate slowly, the bonding strength was improved up to the level of strength by conventional vacuum brazing. The observation of infrared brazed specimens by optical microscope and SEM showed no defect on the joining sections. The experiments of 1-layered pyramidal structures and 2-layered pyramidal structures subject to 3-point bending were conducted to determine structural advantages of multilayered structures. From the results, the multi-layered structure has superior mechanical properties to the single-layered structure.

Fracture Behavior of $Al_2O_3$ Macro-composites with Layered and Fibrous Structure (층상 및 섬유상 $Al_2O_3$ 거시복합체의 파괴거동)

  • 신동우;윤대현;박삼식;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.758-766
    • /
    • 1997
  • Non-brittle fracture behaviour of the two composite structures made of two different brittle materials was investigated using 3-point bending test. First, the layered and fibrous macro-composites were fabricated using the material easily formed, yet showing a brittle fracture behaviour similar to ceramics. The layered and fibrous Al2O3 /Al2O3 composites with weak interface were also fabricated using plate of 2 mm thickness and rod of 3 mm diameter respectively. Comparison of the mechanical properties between these two structures was performed in the lights of flexural strength and work of fracture for the composites consisting of Al2O3 and simulated materials respectively. The strength ratio of layered structure to the monolith of same volume was 0.6 and the ratio of fibrous one was about 0.2 for the composites made of simulated brittle material. The ratio of the work of fracture of the fibrous to the layered was 0.47. For Al2O3/Al2O3 composites, the strength ratio of layered and fibrous structures to the monolith with same volume were about 0.6 and 0.2 respectively. The ratio of work of fracture of the fibrous to the layered was 0.6. These confirmed that the layered structure was superior to the fibrous one in terms of flexural strength and work of fracture.

  • PDF

Study on Wave Absorption of 1D-/2D-Periodic EBG Structures and/or Metamaterial Layered Media as Frequency Selective Surfaces

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • This paper conducts a study on the frequency-dependent filtering and blocking effects of a variety of periodic structures, dubbed frequency selective surface(FSS). The periodic structures of interest are 1D and 2D repeated patterns of metal patches or slots sitting on the interface between the two different regions in the layered media which will show the capacitive or inductive behaviors and incorporated with the electromagnetic bandgap(EBG) geometry as another stratified media. Besides the normal substances so called double positive(DPS)-type in the layered media, metamaterials of double negative(DNG) are considered as layering components on the purpose of investigating the unusual electromagnetic phenomena. Frequency responses of transmission(absorption in terms of scattering) and reflection will be calculated by a numerical analysis which can be validated by the comparison with the open literature and demonstrated for the periodic structures embedding metamaterials or not. Most importantly, numerous examples of FSS will present the useful guidelines to have absorption or reflection properties in the frequency domain.

Investigation of Layered Structure of Fiber Cell Wall in Korean Red Pine by Confocal Reflection Microscopy

  • Kwon, Ohkyung
    • Applied Microscopy
    • /
    • v.44 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • Layered structures of fiber cell wall of Korean red pine (Pinus densiflora) were investigated by confocal reflection microscopy (CRM). CRM micrographs revealed detailed structures of the fiber cell wall such as S1, S2, and S3 layers as well as transition layers (S12 and S23 layers), which are present between the S1, S2, and S3 layers. Microfibril angle (MFA) measurement was possible for the S2 and S3 layer in the cell wall. The experimental results suggest that CRM is a versatile microscopic method for investigation of layered structures and MFA measurement in individual sub layer of the tracheid cell wall.

Simulations of Frequency-dependent Impedance of Ground Rods Considering Multi-layered Soil Structures

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Choi, Jong-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • Lightning has a broad frequency spectrum from DC to a few MHz. Consequently, the high frequency performance of grounding systems for protection against lightning should be evaluated, with the distributed parameter circuit model in a uniform soil being used to simulate grounding impedances. This paper proposes a simulation method which applies the distributed parameter circuit model for the frequency-dependent impedance of vertically driven ground rods by considering multi-layered soil structures where ground rods are buried. The Matlab program was used to calculate the frequency-dependent ground impedances for two ground rods of different lengths. As a result, an increase of the length of ground rod is not always followed by a decrease of grounding impedance, at least at a high frequency. The results obtained using the newly proposed simulation method considering multi-layered soil structures are in good agreement with the measured results.

3D Incident Wave Response of Structures on Layered Media (다층 반무한 지반-구조물계의 입사파 응답해석)

  • Kim, Moon-Kyum;Cho, Woo-Yeon;Koh, Jae-Pil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.317-324
    • /
    • 1999
  • Dynamic interaction analysis of surface structure on layered half-space is performed in frequency domain under incident wave excitation. This present study adopts a coupling method that combines the finite element(FE) for the flexible structures and boundary element(BE) for the layered half-space. A semi-analytical approach is employed to reduce the integration range of wavenumbers in the BE formula. For the incident wave input, the response is decomposed and formulated after the impedance matrix for the structure system. Numerical examples are presented to demonstrate the accuracy of the method. The examples show the feasibility of an extended application to the complicated dynamic analysis of structures on layered media under incident wave excitation.

  • PDF

Analysis of layered bases-foundations models under seismic actions

  • Aghalovyan, L.A.;Sahakyan, A.V.;Aghalovyan, M.L.
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • The paper considers the dynamic behaviour of the two-layered and multi-layered plate packets under dynamic (seismic) loading. These models correspond to the base-foundation packet structures. The analysis of the various models, including the models of contact between the layers, is derived on the base of the precise solutions of elasticity theory equations. It is shown that the application of the seismoisolator or, in general, less rigid materials between the base and the foundation brings to reduction of the natural frequencies of free vibrations of the packet base-foundation, as well as to the significant reduction of the negative seismic effect on the structures.

Failure Analysis of RC Cylindrical Structures using Volume-Control Method (체적제어법에 의한 철근 콘크리트 원통형 구조물의 파괴 해석)

  • 송하원;방정용;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.195-202
    • /
    • 1999
  • In this Paper, a so-called volume-control method for nonlinear failure analysis of reinforced concrete cylindrical structures is proposed. The pressure node which defines uniform change of pressure on finite element is added into layered shell element utilizing in-plane constitutive models of reinforced concrete and layered formulation. With the pressure node formulation, one can control the change in volume enclosed by the cylindrical structures and determine the required change in pressure. An algorith of volume-control method is employed and failure analyses for RC cylindrical structures are carried out using proposed method.

  • PDF

The applications and conduct of vibration equations for constrained layered damped plates with impact

  • Luo, G.M.;Lee, Y.J.;Huang, C.H.
    • Steel and Composite Structures
    • /
    • v.8 no.4
    • /
    • pp.281-296
    • /
    • 2008
  • Visco-elastic material and thin metals were adhered to plate structures, forming the composite components that are similar to the sandwich plates, called constrained layered damped (CLD) plates. Constrained layer damping has been utilized for years to reduce vibration, and advances in computation and finite element analysis software have enabled various problems to be solved by computer. However, some problems consume much calculation time. The vibration equation for a constrained layered damped plate with simple supports and an impact force is obtained theoretically herein. Then, the results of the vibration equation are compared with those obtained using the finite element method (FEM) software, ABAQUS, to verify the accuracy of the theory. Finally, the 3M constrained layer damper SJ-2052 was attached to plates to form constrained layered damped plates, and the vibration equation was used to elucidate the damping effects and vibration characteristics.

Dynamic Analysis of Carbon-fiber-reinforced Plastic for Different Multi-layered Fabric Structure (적층 직물 구조에 따른 탄소강화플라스틱 소재 동적 특성 분석)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.375-382
    • /
    • 2016
  • The mechanical property of a carbon-fiber-reinforced plastic (CFRP) is subjected to two elements, carbon fiber and polymer resin, in a first step and the selection of multi-layered structure is second one. Many combination of fabric layers, i.e. plainweave, twillweave, can be derived for candidates of test specimen used for a basic mechanical components so that a reliable identification of dynamic nature of possible multi-layered structures are essential during the development of CFRP based component system. In this paper, three kinds of multi-layered structure specimens were prepared and the dynamic characteristics of service specimens were conducted through classical modal test process with impact hammer. In addition, the design sensitivity analysis based on transmissibility function was applied for the measured response data so that the response sensitivity for each resonance frequency were compared for three CFRP test specimens. Finally, the evaluation of CFRP specimen over different multi-layered fabric structures are commented from the experimental consequences.