• Title/Summary/Keyword: Layer thickness

Search Result 5,134, Processing Time 0.041 seconds

Electrical Properties Depending on Active Layer Thickness and Annealing Temperature in Amorphous In-Ga-Zn-O Thin-film Transistors (활성층 두께 및 열처리 온도에 따른 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 전기적 특성 변화)

  • Baek, Chan-Soo;Lim, Kee-Joe;Lim, Dong-Hyeok;Kim, Hyun-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.521-524
    • /
    • 2012
  • We report on variations of electrical properties with different active layer thickness and post-annealing temperature in amorphous In-Ga-Zn-O (IGZO) thin-film transistors (TFTs). In particular, subthreshold swing (SS) of the IGZO-TFTs was improved as increasing the active layer thickness at an given post-annealing temperature, accompanying the negative shift in turn-off voltage. However, as increasing post-annealing temperature, only turn-off voltage was shifted negatively with almost constant SS value. The effect of the active layer thickness and post-annealing temperature on electrical properties, such as SS, field effect mobility and turn-off voltage in IGZO-TFTs has been explained in terms of the variation of trap density in IGZO channel layer and at gate dielectric/IGZO interface.

Thickness and Angle Dependent Microcavity Properties in Top-Emission Organic Light-Emitting Diodes (상부 발광 유기 발광 소자에서 두께와 시야각에 따른 마이크로 캐비티 특성)

  • Lee, Won-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.32-35
    • /
    • 2011
  • Top-emission device has a merit of high aperture ratio and narrow emission spectrum compared to that of bottom-emission one. Emission spectra of top-emission organic light-emitting diodes depending on a layer thickness and view angle were analyzed using a theory of microcavity. Device structure was manufactured to be Al (100 nm)/TPD/$Alq_3$/LiF (0.5 nm)/Al (2 nm)/Ag (30 nm). N,N'-diphenyl-N,N'- di (m-tolyl)-benzidine (TPD) and tris (8-hydroxyquinoline) aluminium (Alq3) were used as a hole-transport layer and emission layer, respectively. And a thickness of TPD and Alq3 layer was varied in a range of 40 nm~70 nm and 60 nm~110 nm, respectively. Angle-dependent emission spectrum out of the device was measured with a device fixed on a rotating plate. Since the top-emission device has a property of microcavity, it was observed that the emission spectrum shift to a longer wavelength region as the organic layer thickness increases, and to a shorter wavelength region as the view angle increases. Layer thickness and view-angle dependent emission spectra of the device were analyzed in terms of microcavity theory. A reflectivity of semitransparent cathode and optical path length were deduced.

Effect of Locally Applied Keratinase on Thickness of Rat Skin (국소도포한 각질분해효소가 흰쥐피부의 두께에 미치는 효과)

  • Hwang, Kun;Chang, Chung-Soon;Kim, Dae Joong;Kim, Sung;Joo, Han Seung;Lee, Seung Jin
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.357-362
    • /
    • 2005
  • The aim of this study is to elucidate the effect of keratinase on epidermis of rat skin. Twenty-five male Sprague-Dolly rats were used. The hair on the back were removed and $2{\times}2cm$ area was marked. The rats were divided five groups; 1) Control group(Co), 2) Cleansing gel group(Cl), 3) Cleansing gel+keratinase group, 4) Exfoliant gel group(Ex), and 5) Exfoliant gel+ keratinase group(Ex+K). The solutions were applied to the back area twice a day for five days. On fifth day, the skins were harvested, fixed and prepared for histologic sections. The thickness of keratin layer, living epidermis, dermis, and cell layer number of living epidermis were measured. In the group containing keratinase(Cl+K, Ex+K), the thickness of keratin layer and living layer were thinner than other groups. However, there were no significant differences of the cell layer number of living epidermis and thickness of the dermis among the five groups. We think the keratinase may have the effect thinning the keratin layer as well as the thickness of living epidermis, without effecting the living cell and dermal component. The keratinase containing soap may be of benefit to remove the excess keratin layers in human.

Surface Plasmon Resonance Multisensing Using Thickness Difference of Additional Layer (부가층의 두께 차이를 이용한 표면플라즈몬공명 멀티센싱)

  • Kim, Young-Gyu;Oh, Myung-Hwan;Lee, Seung-Ki
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.10
    • /
    • pp.492-498
    • /
    • 2006
  • A novel surface plasmon resonance(SPR) multisensing method, which does not require imaging apparatus such as CCD, has been proposed and implemented experimentally. The proposed method is based on the multichannel SPR and the separation of signals by use of additional layers whose thickness is controlled. SPR signals are influenced by the thickness of sensing layer as well as the optical condition of sensing surface. As the SPR signals from different ligands are usually positioned closely, the reflected light from sensing surface does not provide us with the clear differences of resonance signal depending on the kinds of ligands. It was found from our experiments that SPR signals from each ligand that is located on the additional layer with different thickness can be separated clearly enough to identify various signals from different ligands. Proposed method with theoretical design and simulation has been verified experimentally by using $SiO_2$ thin film layer as additional layer.

Effects of Magnetic Layer Thickness on Magnetic Properties of CoCrPt/Ti/CoZr Perpendicular Media

  • Hwang, M.S.
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.19-22
    • /
    • 2001
  • Change of magnetic properties in CoCrPt/Ti perpendicular media with varying CoCrPt film thickness has been studied. As the CoCrPt film thickness increases from 25 nm, the Ms (saturation magnetization) increases rapidly at first and then more gradually. This Ms behavior is associated primarily with the formation of an "amorphous-like"reacted layer created by intermixing of CoCrPt and Ti at the CoCrPt/Ti interface and secondarily with a change of the Cr segregation mode with varying CoCrPt film thickness. Magnetic domain structure distinctively changes with increasing CsCrPt magnetic layer (ML) thickness. Also the strength of exchange coupling measured from the slope in the demagnetizing region of the M-H loop changes with ML thickness. The expansion of lattice parameters a and c at smaller film thickness suggests that the Cr segregation mode may be connected with the residual stress of the films. Finally, the negative nucleation field (Hn) shows a unique behavior with the change of strength of the exchange interaction.teraction.

  • PDF

Properties of IZTO Thin Films on Glass with Different Thickness of SiO2 Buffer Layer

  • Park, Jong-Chan;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.290-293
    • /
    • 2015
  • The properties of the IZTO thin films on the glass were studied with a variation of the $SiO_2$ buffer layer thickness. $SiO_2$ buffer layers were deposited by plasma-enhanced chemical vapor deposition (PECVD) on the glass, and the In-Zn-Tin-Oxide (IZTO) thin films were deposited on the buffer layer by RF magnetron sputtering. All the IZTO thin films with the $SiO_2$ buffer layer are shown to be amorphous. Optimum $SiO_2$ buffer layer thickness was obtained through analyzing the structural, morphological, electrical, and optical properties of the IZTO thin films. As a result, the IZTO surface roughness is 0.273 nm with a sheet resistance of $25.32{\Omega}/sq$ and the average transmittance is 82.51% in the visible region, at a $SiO_2$ buffer layer thickness of 40 nm. The result indicates that the uniformity of surface and the properties of the IZTO thin film on the glass were improved by employing the $SiO_2$ buffer layer and the IZTO thin film can be applied well to the transparent conductive oxide for display devices.

Estimation of Hardening Layer Depths in Laser Surface Hardening Processes Using Neural Networks (레이져 표면 경화 공정에서 신경회로망을 이용한 경화층 깊이 예측)

  • Woo, Hyun Gu;Cho, Hyung Suck;Han, You Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.52-62
    • /
    • 1995
  • In the laser surface hardening process the geometrical parameters, especially the depth, of the hardened layer are utilized to assess the integrity of the hardening layer quality. Monitoring of this geometrical parameter ofr on-line process control as well as for on-line quality evaluation, however, is an extremely difficult problem because the hardening layer is formed beneath a material surface. Moreover, the uncertainties in monitoring the depth can be raised by the inevitable use of a surface coating to enhance the processing efficiency and the insufficient knowledge on the effects of coating materials and its thicknesses. The paper describes the extimation results using neural network to estimate the hardening layer depth from measured surface temperanture and process variables (laser beam power and feeding velocity) under various situations. To evaluate the effec- tiveness of the measured temperature in estimating the harding layer depth, estimation was performed with or without temperature informations. Also to investigate the effects of coating thickness variations in the real industry situations, in which the coating thickness cannot be controlled uniform with good precision, estimation was done over only uniformly coated specimen or various thickness-coated specimens. A series of hardening experiments were performed to find the relationships between the hardening layer depth, temperature and process variables. The estimation results show the temperature informations greatly improve the estimation accuracy over various thickness-coated specimens.

  • PDF

Study on Depositing Oxide Films on Ni Substrate for Superconducting Tape (초전도 테이프 제작을 위한 니켈기판 상의 산화물 박막 증찰)

  • Kim, Ho-Sup;Shi, Dongqui;Ko, Rock-Kil;Chung, Jun-Ki;Ha, Hong-Soo;Song, Kyu-Jeong;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1356-1361
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of ///. The buffer layer consists of multi-layer, this study reports the deposition method and optimal deposition conditions of YSZ(Yttria-stabilized zirconia) layer which plays a important part in preventing the elements of substrate from diffusing into the superconducting layer. YSZ layer was deposited by DC reactive sputtering technique using water vapor for oxidizing deposited elements on substrate. To investigate optimal thickness of YSZ film, four YSZ/CeO$_2$/Ni samples with different YSZ thickness(130 nm, 260 nm, 390 nm, and 650 nm) were prepared. The SEM image showed that the surface of YSZ layer was getting to be rougher as YSZ layer was getting thicker and the growth mode of YSZ layer was columnar grain growth. After CeO$_2$ layer was deposited with the same thickness of 18.3 nm on each four samples, YBCO layer was deposited by PLD method with the thickness of 300 nm. The critical currents of four samples were 0, 6 A, 7.5 A, and 5 A respectively. This shows that as YSZ layer is getting thicker, YSZ layer plays a good role as a diffusion barrier but the surface of YSZ layer is getting rougher.

Prediction of Residual Layer Thickness of Large-area UV Imprinting Process (대면적 UV 임프린팅 공정에서 잔류층 두께 예측)

  • Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • Nanoimprint lithography (NIL) is the next generation photolithography process in which the photoresist is dispensed onto the substrate in its liquid form and then imprinted and cured into a desired pattern instead of using traditional optical system. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper, with the rolling type imprinting process, a mold, placed upon the $2^{nd}$ generation TFT-LCD glass sized substrate($370{\times}470mm^2$), is rolled by a rubber roller to achieve a uniform residual layer. The prediction of residual layer thickness of the photoresist by rolling of the rubber roller is crucial to design the rolling type imprinting process, determine the rubber roller operation conditions-mpressing force & feeding speed, operate smoothly the following etching process, and so forth. First, using the elasticity theory of contact problem and the empirical equation of rubber hardness, the contact length between rubber roller and mold is calculated with consideration of the shape and hardness of rubber roller and the pressing force to rubber roller. Next, using the squeeze flow theory to photoresist flow, the residual layer thickness of the photoresist is calculated with information of the viscosity and initial layer thickness of photoresist, the shape of mold pattern, feeding speed of rubber roller, and the contact length between rubber roller and mold previously calculated. Last, the effects of rubber roller operation conditions, impressing force & feeding speed, on the residual layer thickness are analyzed with consideration of the shape and hardness of rubber roller.

Effects of turbulent boundary layer thickness on flow around a low-rise rectangular prism

  • Kim, Kyung Chun;Ji, Ho Seong;Seong, Seung Hak
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.455-467
    • /
    • 2005
  • The effects of upstream velocity profiles on the flow around a low-rise rectangular prism submerged in a turbulent boundary layer have been investigated. Three different boundary layer profiles are generated, which are characterized by boundary layer height, displacement thickness, and momentum thickness. Flow characteristics variations caused by the different layers such as those in turbulent kinetic energy distribution and locations of re-circulating cavities and reattachment points have been precisely measured by using a PIV (Particle Image Velocimetry) technique. Observations were made in a boundary layer wind tunnel at $Re_H$=7900, based on a model height of 40 mm and a free stream velocity of 3 m/s with 15 - 20% turbulence intensity.