DOI QR코드

DOI QR Code

Electrical Properties Depending on Active Layer Thickness and Annealing Temperature in Amorphous In-Ga-Zn-O Thin-film Transistors

활성층 두께 및 열처리 온도에 따른 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 전기적 특성 변화

  • Baek, Chan-Soo (College of Electrical Engineering, Chungbuk National University) ;
  • Lim, Kee-Joe (College of Electrical Engineering, Chungbuk National University) ;
  • Lim, Dong-Hyeok (Display Engineering School, Doowon Technical University College) ;
  • Kim, Hyun-Hoo (Display Engineering School, Doowon Technical University College)
  • 백찬수 (충북대학교 전기공학부) ;
  • 임기조 (충북대학교 전기공학부) ;
  • 임동혁 (두원공과대학교 디스플레이공학부) ;
  • 김현후 (두원공과대학교 디스플레이공학부)
  • Received : 2012.06.14
  • Accepted : 2012.06.24
  • Published : 2012.07.01

Abstract

We report on variations of electrical properties with different active layer thickness and post-annealing temperature in amorphous In-Ga-Zn-O (IGZO) thin-film transistors (TFTs). In particular, subthreshold swing (SS) of the IGZO-TFTs was improved as increasing the active layer thickness at an given post-annealing temperature, accompanying the negative shift in turn-off voltage. However, as increasing post-annealing temperature, only turn-off voltage was shifted negatively with almost constant SS value. The effect of the active layer thickness and post-annealing temperature on electrical properties, such as SS, field effect mobility and turn-off voltage in IGZO-TFTs has been explained in terms of the variation of trap density in IGZO channel layer and at gate dielectric/IGZO interface.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). https://doi.org/10.1126/science.1083212
  3. R. A. Street, Adv. Mater., 21, 2007 (2009). https://doi.org/10.1002/adma.200803211
  4. K. Nomura, T. Aoki, K. Nakamura, T. Kamiya, T. Nakanishi, T. Hasegawa, M. Kimura, T. Kawase, M. Hirano, and H. Hosono, Appl. Phys. Lett., 96, 263509 (2010). https://doi.org/10.1063/1.3458799
  5. M. J. Lee, S. J. Kang, J. Y. Baik, K. K. Jeong, H. D. Kim, H. J. Shin, J. Chung, J. Lee, and J. Lee, J. Appl. Phys., 108, 024507 (2010). https://doi.org/10.1063/1.3457782
  6. W. Lim, J. H. Jang, S. H. Kim, D. P. Norton, V. Craciun, S. J. Pearton, F. Ren, and H. Shen, Appl. Phys. Lett., 93, 082102 (2008). https://doi.org/10.1063/1.2975959
  7. S. Kim, Y. W. Jeon, Y. Kim, D. Kong, H. K. Jung, M. K. Bae, J. H. Lee, B. D. Ahn, S. Y. Park, J. H. Park, J. Park, H. I. Kwon, D. M. Kim, and D. H. Kim, IEEE Electron Devices Lett., 33, 62 (2012). https://doi.org/10.1109/LED.2011.2173153
  8. H. Q. Chiang, B. R. McFarlane, D. Hong, R. E. Presley, and J. F. Wager, Thin Solid Films, 354, 2826 (2008).
  9. B. Kim, E. Chong, D. H. Kim, Y. W. Jeon, D. H. Kim, and S. Y. Lee1, Appl. Phys. Lett., 99, 062108 (2011). https://doi.org/10.1063/1.3615304
  10. S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, Appl. Phys. Lett., 98, 122105 (2011). https://doi.org/10.1063/1.3570641
  11. S. Hwang, J. H. Lee, C. H. Woo, J. Y. Lee, and H. K. Cho, Thin Solid Films, 519, 5146 (2011). https://doi.org/10.1016/j.tsf.2011.01.074
  12. A. H. Chen, H. T. Cao, H. Z. Zhang, L. Y. Liang, Z. M. Liu, Z. Yu, Q. Wan, Microelectron. Eng., 87, 2019 (2010). https://doi.org/10.1016/j.mee.2009.12.081
  13. S. Y. Lee, D. H. Kim, B. Kim, H. K. Jung, and D. H. Kim, Thin Solid Films, 520, 3796 (2012). https://doi.org/10.1016/j.tsf.2011.10.058